Advanced Search
LIU Qiang, XIAO Jin, YU Hang, et al. Research progress of pressure swing adsorption CO2 capture technology and case analysis of its application in petrochemical industry [J]. Southern energy construction, 2024, 11(5): 37-49. DOI: 10.16516/j.ceec.2024.5.04
Citation: LIU Qiang, XIAO Jin, YU Hang, et al. Research progress of pressure swing adsorption CO2 capture technology and case analysis of its application in petrochemical industry [J]. Southern energy construction, 2024, 11(5): 37-49. DOI: 10.16516/j.ceec.2024.5.04

Research Progress of Pressure Swing Adsorption CO2 Capture Technology and Case Analysis of Its Application in Petrochemical Industry

More Information
  • Received Date: August 28, 2023
  • Revised Date: September 27, 2023
  • Available Online: July 18, 2024
  •   Introduction  As an important carbon capture method in CCUS, pressure swing adsorption (PSA) CO2 capture technology has been widely used. However, the excessive capture energy consumption and operation cost restrict the promotion and implementation of the technology. How to accurately select the appropriate capture technology according to the actual situation and reduce the capture energy consumption is particularly important.
      Method  This paper discussed the basic research and technical application of PSA technology at home and abroad, and analyzed the economy and prospect of PSA technology in petrochemical industry based on a practical application case of PSA technology for CO2 capture in a petrochemical enterprise.
      Result  In this case, the project using PSA CO2 capture technology captured and stored about 800000 tons of medium-concentration carbon sources produced by the purification unit and low-temperature methanol washing unit of the coal-to-hydrogen plant. For 73.9% concentration of CO2 raw gas, the device achieved 96% CO2 recovery rate and 98% capture purity. H2S, CH4 and CH3OH are all controlled below 0.015%, which can achieve about 56 kWh/t CO2 capture power consumption. It is found that pressure swing adsorption technology has the advantages of low energy consumption, low piezoresistivity, continuous process and strong stability of adsorbent, which shows the technical and economic feasibility. Since pressure swing adsorption is mainly physical adsorption, PSA may face the problem of high energy consumption and insufficient enrichment concentration for the treatment of low concentration of CO2 feed gas.
      Conclusion  In summary, PSA CO2 capture technology is suitable for the treatment of medium concentration carbon sources, and has potential in thetreatment of exhaust emissions in petrochemical, cement and other industries in the future.
  • [1]
    LUEKING A D, COLE M W. Energy and mass balances related to climate change and remediation [J]. Science of the total environment, 2017, 590-591: 416-429. DOI: 10.1016/j.scitotenv.2016.12.101.
    [2]
    李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015.

    LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015.
    [3]
    JEFFERSON M. IPCC fifth assessment synthesis report: "climate change 2014: longer report": critical analysis [J]. Technological forecasting and social change, 2015, 92: 362-363. DOI: 10.1016/j.techfore.2014.12.002.
    [4]
    YAUMI A L, BAKAR M Z A, HAMEED B H. Recent advances in functionalized composite solid materials for carbon dioxide capture [J]. Energy, 2017, 124: 461-480. DOI: 10.1016/j.energy.2017.02.053.
    [5]
    Global CCS Institute. Global status of CCS 2020 [R]. Australia: Global CCS Institute, 2021.
    [6]
    张治忠, 陈继平, 谭学谦, 等. 天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价 [J]. 南方能源建设, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008.

    ZHANG Z Z, CHEN J P, TAN X Q, et al. Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant [J]. Southern energy construction, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008.
    [7]
    SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges [J]. Renewable and sustainable energy reviews, 2019, 101: 265-278. DOI: 10.1016/j.rser.2018.11.018.
    [8]
    董瑞, 高林, 何松, 等. CCUS技术对我国电力行业低碳转型的意义与挑战 [J]. 发电技术, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053.

    DONG R, GAO L, HE S, et al. Significance and challenges of CCUS technology for low-carbon transformation of China´s power industry [J]. Power generation technology, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053.
    [9]
    TAO M N, XU N, GAO J Z, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study [J]. Energy & fuels, 2019, 33(1): 474-483. DOI: 10.1021/acs.energyfuels.8b03448.
    [10]
    SINGH A, STÉPHENNE K. Shell cansolv CO2 capture technology: achievement from first commercial plant [J]. Energy procedia, 2014, 63: 1678-1685. DOI: 10.1016/j.egypro.2014.11.177.
    [11]
    RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture [J]. International journal of greenhouse gas control, 2016, 51: 106-117. DOI: 10.1016/j.ijggc.2016.04.035.
    [12]
    IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant [J]. Industrial & engineering chemistry research, 2006, 45(8): 2414-2420. DOI: 10.1021/ie050569e.
    [13]
    OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review [J]. Environmental chemistry letters, 2021, 19(1): 77-109. DOI: 10.1007/s10311-020-01093-8.
    [14]
    SMITH K, XIAO G K, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & fuels, 2014, 28(1): 299-306. DOI: 10.1021/ef4014746.
    [15]
    李小端, 赵兴雷, 叶舣, 等. 基于电渗析技术的CO2吸收剂再生过程研究 [J]. 发电技术, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019.

    LI X D, ZHAO X L, YE Y, et al. Study on reclamation process of CO2 absorbent based on electrodialysis technology [J]. Power generation technology, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019.
    [16]
    张欢, 汪丽, 叶舣, 等. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究 [J]. 发电技术, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002.

    ZHANG H, WANG L, YE Y, et al. Study on CO2 absorbent of DETA and TEA mixed amine solution [J]. Power generation technology, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002.
    [17]
    林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003.

    LIN H Z, YANG H, LUO H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern energy construction, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003.
    [18]
    WANG Q, LUO J Z, ZHONG Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends [J]. Energy & environmental science, 2011, 4(1): 42-55. DOI: 10.1039/C0EE00064G.
    [19]
    WAWRZYŃCZAK D, MAJCHRZAK-KUCĘBA I, SROKOSZ K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and purification technology, 2019, 209: 560-570. DOI: 10.1016/j.seppur.2018.07.079.
    [20]
    LIU B, YE L Q, WANG R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity [J]. ACS applied materials & interfaces, 2018, 10(4): 4001-4009. DOI: 10.1021/acsami.7b17503.
    [21]
    WANG L, YANG Y, SHEN W L, et al. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units [J]. Industrial & engineering chemistry research, 2013, 52(23): 7947-7955. DOI: 10.1021/ie4009716.
    [22]
    宗杰, 马庆兰, 陈光进, 等. 二氧化碳分离捕集研究进展 [J]. 现代化工, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013.

    ZONG J, MA Q L, CHEN G J, et al. Progress of the separation and capture of CO2 [J]. Modern chemical industry, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013.
    [23]
    WON Y, KIM J Y, PARK Y C, et al. Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: the optimization of regeneration condition [J]. Energy, 2020, 208: 118188. DOI: 10.1016/j.energy.2020.118188.
    [24]
    HORNBOSTEL M. Pilot-scale evaluation of an advanced carbon sorbent-based process for post-combustion carbon capture [R]. Menlo Park: SRI International, 2016.
    [25]
    高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展 [J]. 辽宁化工, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018.

    GAO T F, CHANG C, YANG Y, et al. Research progress of pressure swing adsorption technology and adsorption materials for carbon capture [J]. Liaoning chemical industry, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018.
    [26]
    张心悦. 层状复合金属氧化物中温吸附CO2的性能研究 [D]. 北京: 北京化工大学, 2018. DOI: 10.7666/d.Y3390266.

    ZHANG X Y. Study on CO2 adsorption of mixed metal oxide under medium temperature [D]. Beijing: Beijing University of Chemical Technology, 2018. DOI: 10.7666/d.Y3390266.
    [27]
    陈琦, 张荣荣, 韩宝航. 基于氧化偶联聚合制备的共轭多孔聚咔唑及相关性能研究进展 [J]. 高分子通报, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001.

    CHEN Q, ZHANG R R, HAN B H. Conjugated porous polycarbazoles via oxidative coupling polymerization from preparation to properties [J]. Chinese polymer bulletin, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001.
    [28]
    GAO W, LIANG S, WANG R, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges [J]. Chemical society reviews, 2020, 49(23): 8584-8686. DOI: 10.1039/D0CS00025F.
    [29]
    RAO L L, MA R, LIU S F, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance [J]. Chemical engineering journal, 2019, 362: 794-801. DOI: 10.1016/j.cej.2019.01.093.
    [30]
    KONG Y X, JIN L, QIU J. Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites [J]. Science of the total environment, 2013, 463-464: 192-198. DOI: 10.1016/j.scitotenv.2013.05.050.
    [31]
    QIAN D, LEI C, HAO G P, et al. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability [J]. ACS applied materials & interfaces, 2012, 4(11): 6125-6132. DOI: 10.1021/am301772k.
    [32]
    CHAI S H, LIU Z M, HUANG K, et al. Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture [J]. Industrial & engineering chemistry research, 2016, 55(27): 7355-7361. DOI: 10.1021/acs.iecr.6b00823.
    [33]
    SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture [J]. Energy & environmental science, 2011, 4(5): 1765-1771. DOI: 10.1039/c0ee00784f.
    [34]
    LIU F Q, LI W, ZHAO J, et al. Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture [J]. Journal of materials chemistry A, 2015, 3(23): 12252-12258. DOI: 10.1039/c5ta01536g.
    [35]
    WANG H, WANG H, LIU G S, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N [J]. Science of the total environment, 2021, 771: 145424. DOI: 10.1016/J.SCITOTENV.2021.145424.
    [36]
    GAN F L, WANG B D, JIN Z H, et al. From typical silicon-rich biomass to porous carbon-zeolite composite: a sustainable approach for efficient adsorption of CO2 [J]. Science of the total environment, 2021, 768: 144529. DOI: 10.1016/j.scitotenv.2020.144529.
    [37]
    ZUKAL A, SHAMZHY M, KUBŮ M, et al. The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats [J]. Journal of CO2 utilization, 2018, 24: 157-163. DOI: 10.1016/j.jcou.2017.12.016.
    [38]
    CHEN S J, ZHU M, TANG Y C, et al. Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite [J]. Journal of materials chemistry A, 2018, 6(40): 19570-19583. DOI: 10.1039/C8TA05647A.
    [39]
    CALLEJA G, PAU J, CALLES J A. Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios [J]. Journal of chemical & engineering data, 1998, 43(6): 994-1003. DOI: 10.1021/je9702100.
    [40]
    WANG S, BAI P, SUN M Z, et al. Fabricating mechanically robust binder-free structured zeolites by 3D printing coupled with zeolite soldering: a superior configuration for CO2 capture [J]. Advanced science, 2019, 6(17): 1901317. DOI: 10.1002/advs.201901317.
    [41]
    YANG H D, FANG X Q, LI Z Y, et al. Copper-doped small pore zeolites for CO2 capture by honeycomb rotor with low temperature regeneration [J]. ACS sustainable chemistry & engineering, 2022, 10(5): 1759-1764. DOI: 10.1021/acssuschemeng.1c08347.
    [42]
    LIANG W Q, HUANG J H, XIAO P, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese journal of chemical engineering, 2022, 43: 335-342. DOI: 10.1016/j.cjche.2022.02.004.
    [43]
    ALINEZHAD H, ABARGHOUEI M F, TAJBAKHSH M, et al. Application of MEA, TEPA and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian journal of chemistry and chemical engineering, 2021, 40(2): 581-592. DOI: 10.30492/IJCCE.2020.37861.
    [44]
    LIU Z, WANG L, KONG X M, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & engineering chemistry research, 2012, 51(21): 7355-7363. DOI: 10.1021/ie3005308.
    [45]
    WANG L, YANG Y, SHEN W L, et al. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant [J]. Chemical engineering science, 2013, 101: 615-619. DOI: 10.1016/j.ces.2013.07.028.
    [46]
    GE K, YU Q C, CHEN S H, et al. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes [J]. Chemical engineering journal, 2019, 364: 328-339. DOI: 10.1016/j.cej.2019.01.183.
    [47]
    AFONSO R, SARDO M, MAFRA L, et al. Unravelling the structure of chemisorbed CO2 species in mesoporous aminosilicas: a critical survey [J]. Environmental science & technology, 2019, 53(5): 2758-2767. DOI: 10.1021/acs.est.8b05978.
    [48]
    MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture [J]. Nature communications, 2018, 9(1): 726. DOI: 10.1038/s41467-018-03123-0.
    [49]
    KIM C, CHOI W, CHOI M. SO2-resistant amine-containing CO2 adsorbent with a surface protection layer [J]. ACS applied materials & interfaces, 2019, 11(18): 16586-16593. DOI: 10.1021/acsami.9b02831.
    [50]
    ANYANWU J T, WANG Y R, YANG R T. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica [J]. Chemical engineering journal, 2022, 427: 131561. DOI: 10.1016/J.CEJ.2021.131561.
    [51]
    LI K M, JIANG J G, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents [J]. Applied energy, 2014, 136: 750-755. DOI: 10.1016/j.apenergy.2014.09.057.
    [52]
    MENG Y, JIANG J G, GAO Y C, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents [J]. Journal of CO2 utilization, 2018, 27: 89-98. DOI: 10.1016/j.jcou.2018.07.007.
    [53]
    LOU F J, ZHANG A F, ZHANG G H, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure [J]. Applied energy, 2020, 264: 114637. DOI: 10.1016/j.apenergy.2020.114637.
    [54]
    CHEN C, XU H F, JIANG Q B, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents [J]. Energy, 2021, 214: 119093. DOI: 10.1016/j.energy.2020.119093.
    [55]
    LI K M, LU L, XU Y R, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation [J]. International journal of greenhouse gas control, 2021, 106: 103289. DOI: 10.1016/j.ijggc.2021.103289.
    [56]
    CHENG Y D, TAVARES S R, DOHERTY C M, et al. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture [J]. ACS applied materials & interfaces, 2018, 10(49): 43095-43103. DOI: 10.1021/acsami.8b16386.
    [57]
    ANDERSON R, RODGERS J, ARGUETA E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning [J]. Chemistry of materials, 2018, 30(18): 6325-6337. DOI: 10.1021/acs.chemmater.8b02257.
    [58]
    吴屹伟. 微纳结构镍和铬基金属-有机框架及其复合材料的电化学性能研究 [D]. 漳州: 闽南师范大学, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216.

    WU Y W. Study on the electrochemical properties of Cr and Ni-based mofs and their composites [D]. Zhangzhou: Minnan Normal University, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216.
    [59]
    RAMOS-FERNANDEZ E V, GRAU-ATIENZA A, FARRUSSENG D, et al. A water-based room temperature synthesis of ZIF-93 for CO2 adsorption [J]. Journal of materials chemistry A, 2018, 6(14): 5598-5602. DOI: 10.1039/c7ta09807C.
    [60]
    LIU X L, PANG H W, LIU X W, et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions [J]. The innovation, 2021, 2(1): 100076. DOI: 10.1016/J.XINN.2021.100076.
    [61]
    ZHANG Y F, LIU H X, GAO F X, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment [J]. EnergyChem, 2022, 4(4): 100078. DOI: 10.1016/j.enchem.2022.100078.
    [62]
    DIVEKAR S, DASGUPTA S, ARYA A, et al. Improved CO2 recovery from flue gas by layered bed vacuum swing adsorption (VSA) [J]. Separation and purification technology, 2020, 234: 115594. DOI: 10.1016/j.seppur.2019.05.036.
    [63]
    EBNER A D, RITTER J A. Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture [J]. Aiche journal, 2010, 50(10): 2418-2429. DOI: 10.1002/aic.10191.
    [64]
    刘闯. 分离CO2的煤基活性炭制备研究 [D]. 徐州: 中国矿业大学, 2017.

    LIU C. Research on preparation of coal-based activated carbon for separating CO2 [D]. Xuzhou: China University of Mining and Technology, 2017.
    [65]
    BAHRUN M H V, BONO A, OTHMAN N, et al. Carbon dioxide removal from biogas through pressure swing adsorption-a review [J]. Chemical engineering research and design, 2022, 183: 285-306. DOI: 10.1016/J.CHERD.2022.05.012.
    [66]
    刘应书, 郑新港, 刘文海, 等. 烟道气低浓度二氧化碳的变压吸附法富集研究 [J]. 现代化工, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017.

    LIU Y S, ZHENG X G, LIU W H, et al. Low concentration carbon dioxide enrichment from flue gas by pressure swing adsorption [J]. Modern chemical industry, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017.
    [67]
    GHANBARI T, ABNISA F, WAN DAUD W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption [J]. Science of the total environment, 2020, 707: 135090. DOI: 10.1016/j.scitotenv.2019.135090.
    [68]
    SHAH G, AHMAD E, PANT K K, et al. Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption [J]. International journal of hydrogen energy, 2021, 46(9): 6588-6612. DOI: 10.1016/j.ijhydene.2020.11.116.
    [69]
    HARAOKA T, MOGI Y, SAIMA H. PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation [J]. Kagaku kogaku ronbunshu, 2013, 39(5): 439-444. DOI: 10.1252/kakoronbunshu.39.439.
    [70]
    QADER A, HOOPER B, INNOCENZI T, et al. Novel post-combustion capture technologies on a lignite fired power plant - results of the CO2CRC/H3 capture project [J]. Energy procedia, 2011, 4: 1668-1675. DOI: 10.1016/j.egypro.2011.02.039.
    [71]
    ISHIBASHI M, OTA H, AKUTSU N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy conversion and management, 1996, 37(6/8): 929-933. DOI: 10.1016/0196-8904(95)00279-0.
    [72]
    CHO S H, PARK J H, BEUM H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in surface science and catalysis, 2004, 153: 405-410. DOI: 10.1016/S0167-2991(04)80287-8.
  • Cited by

    Periodical cited type(1)

    1. 朱文韬, 杜振, 张杨, 罗聪, 张立麒. 燃煤烟气固体吸附二氧化碳捕集技术研究进展. 热力发电. 2025(06)

    Other cited types(0)

Catalog

    XUE Rong, xuerong@gedi.com.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (3450) PDF downloads (120) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return