[1] 袁亚, 张木, 李翔, 等. 国外水下预置无人作战装备研究 [J]. 战术导弹技术, 2018(1): 51-55. DOI:  10.16358/j.issn.1009-1300.2018.01.09.

YUAN Y, ZHANG M, LI X, et al. Research on underwater pre-installed unmanned combat equipment [J]. Tactical missile technology, 2018(1): 51-55. DOI:  10.16358/j.issn.1009-1300.2018.01.09.
[2] 张卫京, 高玉英, 何峰. 水下尖兵−无人水下机器人 [J]. 轻兵器, 2019(8): 22-26. DOI:  10.3969/j.issn.1000-8810.2019.08.010.

ZHANG W J, GAO Y Y, HE F. Underwater elite: unmanned underwater robot [J]. Small arms, 2019(8): 22-26. DOI:  10.3969/j.issn.1000-8810.2019.08.010.
[3] 李红享, 项福军, 刘强, 等. 密闭环境燃料电池系统研究进展 [J]. 船电技术, 2022, 42(10): 110-113. DOI:  10.3969/j.issn.1003-4862.2022.10.027.

LI H X, XIANG F J, LIU Q, et al. Research progress of fuel cell system in confined environment [J]. Marine electric & electronic engineering, 2022, 42(10): 110-113. DOI:  10.3969/j.issn.1003-4862.2022.10.027.
[4] 陈长聘, 王新华, 陈立新. 燃料电池车车载储氢系统的技术发展与应用现状 [J]. 太阳能学报, 2005, 26(3): 435-442. DOI:  10.3321/j.issn:0254-0096.2005.03.027.

CHEN C P, WANG X H, CHEN L X. Current status of development and applications of onboard hydrogen storage technologies for fuel cell vehicle [J]. Acta energiae solaris sinica, 2005, 26(3): 435-442. DOI:  10.3321/j.issn:0254-0096.2005.03.027.
[5] 郑津洋, 刘贤信, 徐平, 等. 高压储氢技术研究进展 [J]. 工厂动力, 2010, 1: 39-45.

ZHENG J Y, LIU X X, XU P, et al. Research progress of high-pressure hydrogen storage technology [J]. Factory power, 2010, 1: 39-45.
[6] 葛静, 张沛龙, 朱永国, 等. 金属氢化物储氢装置的研究进展 [J]. 新材料产业, 2014(7): 55-60. DOI:  10.3969/j.issn.1008-892X.2014.07.013.

GE J, ZHANG P L, ZHU Y G, et al. Research progress of metal hydride hydrogen storage device [J]. New material industry, 2014(7): 55-60. DOI:  10.3969/j.issn.1008-892X.2014.07.013.
[7] 徐东彦, 张华民, 叶威. 硼氢化钠水解制氢 [J]. 化学进展, 2007, 19(10): 1598-1605.

XU D Y, ZHANG H M, YE W. Hydrogen production from sodium borohydride [J]. Progress in chemistry, 2007, 19(10): 1598-1605.
[8] 张剑光. 氢能产业发展展望-制氢与氢能储运 [J]. 化工设计, 2019, 29(4): 3-6+26. DOI:  10.3969/j.issn.1007-6247.2019.04.002.

ZHANG J G. Prospect of hydrogen energy industry development: hydrogen production and hydrogen storage & transportation [J]. Chemical engineering design, 2019, 29(4): 3-6+26. DOI:  10.3969/j.issn.1007-6247.2019.04.002.
[9] 苏海兰, 史立杰, 高珠, 等. 甲醇水蒸气重整制氢研究进展 [J]. 工业催化, 2019, 27(4): 28-31. DOI:  10.3969/j.issn.1008-1143.2019.04.006.

SU H L, SHI L J, GAO Z, et al. Research progress of hydrogen production from methanol steam reforming [J]. Industrial catalysis, 2019, 27(4): 28-31. DOI:  10.3969/j.issn.1008-1143.2019.04.006.
[10] 宋强. 水下无人航行器燃料电池技术浅谈 [J]. 舰船科学技术, 2020, 42(12): 150-154. DOI:  10.3404/j.issn.1672-7649.2020.12.030.

SONG Q. Discussion on fuel cell technology for underwater unmanned vehicles [J]. Ship science and technology, 2020, 42(12): 150-154. DOI:  10.3404/j.issn.1672-7649.2020.12.030.
[11] 贾江鑫, 洪浩源, 王振. 几种储氢技术在氢燃料电池船舶应用的对比分析 [J]. 船电技术, 2022, 42(5): 37-40. DOI:  10.3969/j.issn.1003-4862.2022.05.010.

JIA J X, HONG H Y, WANG Z. Comparative analysis of several hydrogen storage technology in hydrogen fuel cell ships [J]. Marine electric & electronic engineering, 2022, 42(5): 37-40. DOI:  10.3969/j.issn.1003-4862.2022.05.010.
[12] 路骏, 白超, 高育科, 等. 水下燃料电池推进技术研究进展 [J]. 推进技术, 2020, 41(11): 2450-2464. DOI:  10.13675/j.cnki.tjjs.200282.

LU J, BAI C, GAO Y K, et al. Progress on underwater fuel cell propulsion technology [J]. Journal of propulsion technology, 2020, 41(11): 2450-2464. DOI:  10.13675/j.cnki.tjjs.200282.
[13]

VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications [J]. Journal of power sources, 2016, 327: 345-364. DOI:  10.1016/j.jpowsour.2016.07.007.
[14] 吴剑威, 张鲁闽, 马继民, 等. 野战医疗供氧方法探讨 [J]. 中国医学装备, 2012, 9(4): 23-26. DOI:  10.3969/j.issn.1672-8270.2012.04.008.

WU J W, ZHANG L M, MA J M, et al. Discussion on methods of oxygen supply in field operation [J]. China medical equipment, 2012, 9(4): 23-26. DOI:  10.3969/j.issn.1672-8270.2012.04.008.
[15]

MCCARRICK A, HAAS J, JOHNSON K, et al. U.S. navy sodium chlorate oxygen candle safety [C]//American Institute of Aeronautics and Astronautics (AIAA). 41st International Conference on Environmental Systems, Portland, Oregon, July 17-21, 2011: 5045. Reston: AIAA, 2012.
[16] 王额尔敦, 强显成, 徐佳. 密闭/半密闭舱室二氧化碳清除技术应用进展 [J]. 医疗卫生装备, 2013, 34(12): 97-99. DOI:  10.7687/J.ISSN.1003-8868.2013.12.097.

WANG E E D, QIANG X C, XU J. Application progress of carbon dioxide removal technology in airtight/semi-airtight compartment [J]. Chinese medical equipment journal, 2013, 34(12): 97-99. DOI:  10.7687/J.ISSN.1003-8868.2013.12.097.
[17] 毛欣. 高强度高吸收性能CO2吸收剂LiOH [J]. 煤矿安全, 2007, 38(6): 52-55. DOI:  10.3969/j.issn.1003-496X.2007.06.019.

MAO X. High intensity and high exhaustion performance CO2 absorbent LiOH [J]. Safety in coal mines, 2007, 38(6): 52-55. DOI:  10.3969/j.issn.1003-496X.2007.06.019.
[18] 杨国威, 卞强, 余青霓, 等. 密闭空间温湿度条件对LiOH吸收效率的影响 [J]. 载人航天, 2012, 18(5): 14-18. DOI:  10.3969/j.issn.1674-5825.2012.05.005.

YANG G W, BIAN Q, YU Q N, et al. Influence of temperature and humidity on absorption efficiency of LiOH in confined space [J]. Manned spaceflight, 2012, 18(5): 14-18. DOI:  10.3969/j.issn.1674-5825.2012.05.005.
[19] 王雅娟, 马丽娥, 国德旺, 等. KO2药板使用条件下LiOH罐的二氧化碳吸收性能研究 [J]. 舰船防化, 2012(4): 16-19.

WANG Y J, MA L E, GUO D W, et al. Performance of LiOH canister on carbon dioxide absorption under conditions suitable for KO2 [J]. Chemical defence on ships, 2012(4): 16-19.
[20] 郦正能, 程小全, 方卫国, 等. 飞机部件与系统设计 [M]. 北京: 北京航空航天大学出版社, 2006.

LI Z N, CHENG X Q, FANG W G, et al. Aircraft component and system design [M]. Beijing: Beihang University Press, 2006.
[21] 赵卓, 傅平丰. LiOH·H2O水合结晶与CO2的反应动力学 [J]. 航天医学与医学工程, 2007, 20(5): 344-348. DOI:  10.3969/j.issn.1002-0837.2007.05.008.

ZHAO Z, FU P F. Kinetics of reaction between LiOH·H2O and CO2 [J]. Space medicine & medical engineering, 2007, 20(5): 344-348. DOI:  10.3969/j.issn.1002-0837.2007.05.008.