[1] |
张东东, 崔新维. BP神经网络在风力发电机风向预测中的应用 [J]. 太阳能, 2015(3): 47-49. DOI: 10.3969/j.issn.1003-0417.2015.03.011.
ZHANG D D, CUI X W. Application of BP neural network in wind direction forecast of wind turbine [J]. Solar Energy, 2015(3): 47-49. DOI: 10.3969/j.issn.1003-0417.2015.03.011. |
[2] |
CHENG W Y, LIU Y B, BOURGEOIS A J, et al. Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation [J]. Renewable Energy, 2017, 107: 340-351. DOI: 10.1016/j.renene.2017.02.014. |
[3] |
ERDEM E, SHI J. ARMA based approaches for forecasting the tuple of wind speed and direction [J]. Applied Energy, 2011, 88(4): 1405-1414. DOI: 10.1016/j.apenergy.2010.10.031. |
[4] |
KAVASSERI R G, SEETHARAMAN K. Day-ahead wind speed forecasting using f-ARIMA models [J]. Renewable Energy, 2009, 34(5): 1388-1393. DOI: 10.1016/j.renene.2008.09.006. |
[5] |
AMBACH D, SCHMID W. A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting [J]. Energy, 2017, 135(17): 833-850. DOI: 10.1016/j.energy.2017.06.137. |
[6] |
WANG S X, ZHANG N, WU L, et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method [J]. Renewable Energy, 2016, 94: 629-636. DOI: 10.1016/j.renene.2016.03.103. |
[7] |
KHOSRAVI A, KOURY R N N, MACHADO L, et al. Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system [J]. Sustainable Energy Technologies and Assessments, 2018, 25: 146-160. DOI: 10.1016/j.seta.2018.01.001. |
[8] |
张亚超, 刘开培, 秦亮. 基于VMD-SE和机器学习算法的短期风电功率多层级综合预测模型 [J]. 电网技术, 2016, 40(5): 1334-1340. DOI: 10.13335/j.1000-3673.pst.2016.05.007.
ZHANG Y C, LIU K P, QIN L. Short-term wind power multi-leveled combined forecasting model based on Variational Mode Decomposition-Sample entropy and machine learning algorithms [J]. Power System Technology, 2016, 40(5): 1334-1340. DOI: 10.13335/j.1000-3673.pst.2016.05.007. |
[9] |
唐振浩, 赵赓楠, 曹生现, 等. 一种基于数据解析的混合风向预测算法 [J]. 太阳能学报, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119.
TANG Z H, ZHAO G N, CAO S X, et al. A data analystic based hybrid wind direction prediction algorithm [J]. Acta Energiae Solaris Sinica, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119. |
[10] |
林涛, 王建君, 张达. 基于VMD-BA-LSTM的短期风向预测研究 [J]. 高技术通讯, 2021, 31(6): 653-659. DOI: 10.3772/j.issn.1002-0470.2021.06.010.
LIN T, WANG J J, ZHANG D. Short-term wind direction prediction research based on VMD-BA-LSTM [J]. Chinese High Technology Letters, 2021, 31(6): 653-659. DOI: 10.3772/j.issn.1002-0470.2021.06.010. |
[11] |
向玲, 李京蓄, 王朋鹤, 等. 基于VMD-FIG和参数优化GRU的风速多步区间预测 [J]. 太阳能学报, 2021, 42(10): 237-242. DOI: 10.19912/j.0254-0096.tynxb.2019-1083.
XIANG L, LI J X, WANG P H, et al. Wind speed multistep interval forecasting based on VMD-FIG and parameter-optimized GRU [J]. Acta Energiae Solaris Sinica, 2021, 42(10): 237-242. DOI: 10.19912/j.0254-0096.tynxb.2019-1083. |
[12] |
吴迪, 刘怀西, 苗得胜. 尾流算法与风向变化对海上风机排布影响研究 [J]. 南方能源建设, 2019, 6(2): 54-58. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.010.
WU D, LIU H X, MIAO D S. Research on offshore wind farm units layout considering the algorithm of wake model and the change of wind direction [J]. Southern Energy Construction, 2019, 6(2): 54-58. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.010. |
[13] |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. DOI: 10.1109/tsp.2013.2288675. |
[14] |
RICHMAN J S, LAKE D E, MOORMAN J R. Sample entropy [J]. Methods in Enzymology, 2004, 384: 172-184. DOI: 10.1016/S0076-6879(04)84011-4. |
[15] |
ZHANG Y G, PAN G F. A hybrid prediction model for forecasting wind energy resources [J]. Environmental Science and Pollution Research, 2020, 27(16): 19428-19446. DOI: 10.1007/s11356-020-08452-6. |
[16] |
GRAVES A. Long short-term memory [M]//GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012: 37-45. DOI: 10.1007/978-3-642-24797-2_4. |
[17] |
国家市场监督管理总局, 国家标准化管理委员会. 风电场气象观测资料审核、插补与订正技术规范: GB/T 37523—2019 [S]. 北京: 中国标准出版社, 2019.
State Administration for Market Regulation, Standardization Administration. Specification for data inspection and correction of wind power plant meteorological observation: GB/T 37523—2019 [S]. Beijing: Standards Press of China, 2019. |