[1] 陈国建. 南通地区输电线路风灾倒塔分析与防范对策 [J]. 江苏电机工程, 2012, 31(2): 18-21. DOI:  10.3969/j.issn.1009-0665.2012.02.006.

CHEN G J. Analysis and countermeasures of Nantong area electric transmission line and tower falling caused by wind damage [J]. Jiangsu electrical engineering, 2012, 31(2): 18-21. DOI:  10.3969/j.issn.1009-0665.2012.02.006.
[2] 江巳彦, 潘春平, 庄志伟, 等. 广东沿海输电线路台风倒塔事故的分析探讨 [J]. 南方能源建设, 2016, 3(增刊1): 82-87. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.018.

JIANG S Y, PAN C P, ZHUANG Z W, et al. Analysis of collapse accident of transmission line tower causing by typhoon attacking in the coastal district of Guangdong province [J]. Southern energy construction, 2016, 3(Suppl.1): 82-87. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.018.
[3] 厉天威, 江巳彦, 赵建华, 等. 南方电网沿海地区输电线路风灾事故分析 [J]. 高压电器, 2016, 52(6): 23-28. DOI:  10.13296/j.1001-1609.hva.2016.06.004.

LI T W, JIANG S Y, ZHAO J H, et al. Wind accident analysis of southern grid coastal region transmission line [J]. High voltage apparatus, 2016, 52(6): 23-28. DOI:  10.13296/j.1001-1609.hva.2016.06.004.
[4] 李小芳, 杨伟军, 谢文平, 等. 强台风频发区输电塔破坏特征研究 [J]. 中国高新技术企业, 2016(12): 28-30. DOI:  10.13535/j.cnki.11-4406/n.2016.12.013.

LI X F, YANG W J, XIE W P, et al. Research on the damage characteristics of power transmission towers in areas with frequent strong typhoons [J]. Chinese high-tech enterprises, 2016(12): 28-30. DOI:  10.13535/j.cnki.11-4406/n.2016.12.013.
[5] 朱云祥, 张若愚, 曹枚根, 等. 海岛大跨越输电塔线体系风振响应及风振系数 [J]. 高压电器, 2022, 58(1): 111-121. DOI:  10.13296/j.1001-1609.hva.2022.01.015.

ZHU Y X, ZHANG R Y, CAO M G, et al. Wind induced vibration response and coefficient of large crossing transmission tower line system between islands [J]. High voltage apparatus, 2022, 58(1): 111-121. DOI:  10.13296/j.1001-1609.hva.2022.01.015.
[6] 吕洪坤, 刘孟龙, 池伟, 等. 输电塔风致响应数值模拟研究进展 [J]. 钢结构, 2020, 35(4): 1-10. DOI:  10.13206/j.gjgS20051202.

LÜ H K, LIU M L, CHI W, et al. Progress in numerical simulation study of wind-induced response of transmission towers [J]. Steel construction, 2020, 35(4): 1-10. DOI:  10.13206/j.gjgS20051202.
[7] 朱晓颖. 图: 江苏巨风导致镇江输电塔倒伏受损 [EB/OL]. (2009-06-15) [2024-02-18]. http://www.chinanews.com/tp/news/2009/06-15/1734388.shtml.

ZHU X Y. Pictured: strong winds in Jiangsu caused lodging damage to the Zhenjiang transmission tower [EB/OL]. (2009-06-15) [2024-02-18]. http://www.chinanews.com/tp/news/2009/06-15/1734388.shtml.
[8] 晁锐. 某330 kV高压输电线路风灾事故原因分析 [J]. 电力勘测设计, 2016(3): 43-47. DOI:  10.3969/j.issn.1671-9913.2016.03.012.

CHAO R. Analysis on wind disaster of a 330 kV high voltage transmission line [J]. Electric power survey & design, 2016(3): 43-47. DOI:  10.3969/j.issn.1671-9913.2016.03.012.
[9] 李敏生, 王振华. 中国输电线路规范的风荷载计算比较 [J]. 南方能源建设, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.

LI M S, WANG Z H. Comparison of wind load calculation for China transmission codes [J]. Southern energy construction, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.
[10] 章东鸿, 王振华. 输电线路导地线阵风响应计算与比较 [J]. 中国电力, 2016, 49(7): 27-31. DOI:  10.11930/j.issn.1004-9649.2016.07.027.05.

ZHANG D H, WANG Z H. Computation and comparison for gust response of wires of transmission line [J]. Electric power, 2016, 49(7): 27-31. DOI:  10.11930/j.issn.1004-9649.2016.07.027.05.
[11] 王振华. 输电塔体型系数与角度风荷载系数对比研究 [J]. 电力勘测设计, 2021(2): 17-23. DOI:  10.13500/j.dlkcsj.issn1671-9913.2021.02.005.

WANG Z H. Comparative study on shape coefficient and yawed wind load coefficient of transmission tower [J]. Electric power survey & design, 2021(2): 17-23. DOI:  10.13500/j.dlkcsj.issn1671-9913.2021.02.005.
[12]

FU X, WANG J, LI H N, et al. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads [J]. Journal of wind engineering and industrial aerodynamics, 2019, 190: 119-133. DOI:  10.1016/j.jweia.2019.04.011.
[13]

ALBERMANI F, KITIPORNCHAI S, CHAN R W K. Failure analysis of transmission towers [J]. Engineering failure analysis, 2009, 16(6): 1922-1928. DOI:  10.1016/j.engfailanal.2008.10.001.
[14]

GAO X Y, YI R, ZHANG L Q, et al. Failure analysis of transmission tower in full-scale tests [J]. Buildings, 2022, 12(4): 389. DOI:  10.3390/buildings12040389.
[15]

LIU J C, YANG M, TIAN L, et al. Progressive failure and seismic fragility analysis for transmission towers considering buckling effect [J]. Journal of constructional steel research, 2023, 208: 108029. DOI:  10.1016/j.jcsr.2023.108029.
[16] 郭勇, 孙炳楠, 叶尹, 等. 大跨越输电塔线体系气弹模型风洞试验 [J]. 浙江大学学报(工学版), 2007, 41(9): 1482-1486. DOI:  10.3785/j.issn.1008-973X.2007.09.010.

GUO Y, SUN B N, YE Y, et al. Wind tunnel test on aeroelastic model of long span transmission line system [J]. Journal of Zhejiang University (engineering science), 2007, 41(9): 1482-1486. DOI:  10.3785/j.issn.1008-973X.2007.09.010.
[17] 谢强, 严承涌. 1000 kV特高压交流同塔双回输电塔线耦联体系风洞试验 [J]. 高电压技术, 2010, 36(4): 900-906. DOI:  10.13336/j.1003-6520.hve.2010.04.016.

XIE Q, YAN C Y. Wind tunnel test on 1000 kV UHV AC double circuit transmission tower-conductor coupling system [J]. High voltage engineering, 2010, 36(4): 900-906. DOI:  10.13336/j.1003-6520.hve.2010.04.016.
[18] 楼文娟, 蒋莹, 金晓华, 等. 台风风场下角钢塔风振特性风洞试验研究 [J]. 振动工程学报, 2013, 26(2): 207-213. DOI:  10.3969/j.issn.1004-4523.2013.02.008.

LOU W J, JIANG Y, JIN X H, et al. Wind tunnel test research on wind-induced vibration characteristics of angle steel tower in typhoon field [J]. Journal of vibration engineering, 2013, 26(2): 207-213. DOI:  10.3969/j.issn.1004-4523.2013.02.008.
[19] 张庆华, 马文勇. 多回路高压输电塔典型横担结构风力系数风洞试验研究 [J]. 振动与冲击, 2016, 35(16): 158-163. DOI:  10.13465/j.cnki.jvs.2016.16.025.

ZHANG Q H, MA W Y. Experimental study of wind force coefficients on typical crossarms of a multi-circuit high-voltage transmission tower [J]. Journal of vibration and shock, 2016, 35(16): 158-163. DOI:  10.13465/j.cnki.jvs.2016.16.025.
[20] 楼文娟, 王东, 沈国辉, 等. 角钢输电塔杆件风压及体型系数的风洞试验研究 [J]. 华中科技大学学报(自然科学版), 2013, 41(4): 114-118,132. DOI:  10.13245/j.hust.2013.04.023.

LOU W J, WANG D, SHEN G H, et al. Wind tunnel tests for wind load distribution and shape coefficient of angle-made-transmission towers [J]. Journal of Huazhong University of science and technology (natural science edition), 2013, 41(4): 114-118,132. DOI:  10.13245/j.hust.2013.04.023.
[21] 张琳琳, 谢强, 李杰. 输电线路多塔耦联体系的风致动力响应分析 [J]. 防灾减灾工程学报, 2006, 26(3): 261-267. DOI:  10.3969/j.issn.1672-2132.2006.03.004.

ZHANG L L, XIE Q, LI J. Dynamic wind-induced response analysis of multi-tower-line coupled system of transmission line [J]. Journal of disaster prevention and mitigation engineering, 2006, 26(3): 261-267. DOI:  10.3969/j.issn.1672-2132.2006.03.004.
[22] 冯康, 赵海玲. 输电塔风振响应数值分析 [J]. 科技视界, 2016(23): 319-320. DOI:  10.3969/j.issn.2095-2457.2016.23.260.

FENG K, ZHAO H L. Numerical analysis of wind induced vibration response of transmission towers [J]. Science & technology vision, 2016(23): 319-320. DOI:  10.3969/j.issn.2095-2457.2016.23.260.
[23] 王炎铭. 宁波地区输电塔风致动力响应分析 [J]. 安徽建筑, 2021, 28(3): 66-67. DOI:  10.16330/j.cnki.1007-7359.2021.03.031.

WANG Y M. Wind induced dynamic response analysis of transmission towers in Ningbo area [J]. Anhui architecture, 2021, 28(3): 66-67. DOI:  10.16330/j.cnki.1007-7359.2021.03.031.
[24] 孟令星, 俞琪琦, 曾玉洁, 等. 考虑导线影响的风致输电塔倒塌模拟 [J]. 低温建筑技术, 2016, 38(7): 81-84. DOI:  10.13905/j.cnki.dwjz.2016.07.028.

MENG L X, YU Q Q, ZENG Y J, et al. Simulation of wind induced collapse of transmission towers considering the influence of conductors [J]. Low temperature architecture technology, 2016, 38(7): 81-84. DOI:  10.13905/j.cnki.dwjz.2016.07.028.
[25] 张志强, 安利强, 庞松岭, 等. 基于塔线体系模型的沿海输电铁塔抗风性能研究 [J]. 电力科学与工程, 2016, 32(11): 74-78. DOI:  10.3969/j.issn.1672-0792.2016.11.013.

ZHANG Z Q, AN L Q, PANG S L, et al. The study of wind resistance performance in coastal region tower based on transmission line system model [J]. Electric power science and engineering, 2016, 32(11): 74-78. DOI:  10.3969/j.issn.1672-0792.2016.11.013.
[26]

AN L Q, GUAN Y Y, ZHU Z J, et al. Structural failure analysis of a river-crossing transmission line impacted by the super typhoon rammasun [J]. Engineering failure analysis, 2019, 104: 911-931. DOI:  10.1016/j.engfailanal.2019.06.069.
[27]

SNAIKI R, PARIDA S S. A data-driven physics-informed stochastic framework for hurricane-induced risk estimation of transmission tower-line systems under a changing climate [J]. Engineering structures, 2023, 280: 115673. DOI:  10.1016/j.engstruct.2023.115673.
[28]

EL DAMATTY A A, HAMADA A. F2 tornado velocity profiles critical for transmission line structures [J]. Engineering structures, 2016, 106: 436-449. DOI:  10.1016/j.engstruct.2015.10.020.
[29]

ZHU C, YANG Q S, WANG D H, et al. Fragility analysis of transmission towers subjected to downburst winds [J]. Applied sciences, 2023, 13(16): 9167. DOI:  10.3390/app13169167.
[30] 朱晓虎, 胡晨, 周方圆, 等. 下击暴流作用下输电塔体系的风振响应与优化设计研究进展 [J]. 工程与建设, 2022, 36(5): 1241-1244, 1294. DOI:  10.3969/j.issn.1673-5781.2022.05.008.

ZHU X H, HU C, ZHOU F Y, et al. Research progress on dynamic response and optional design of transmission tower system under downburst [J]. Engineering and construction, 2022, 36(5): 1241-1244, 1294. DOI:  10.3969/j.issn.1673-5781.2022.05.008.
[31] 杨风利, 张宏杰, 杨靖波, 等. 下击暴流作用下输电铁塔荷载取值及承载性能分析 [J]. 中国电机工程学报, 2014, 34(24): 4179-4186. DOI:  10.13334/j.0258-8013.pcsee.2014.24.023.

YANG F L, ZHANG H J, YANG J B, et al. Bearing capacity analysis and load values of transmission towers under thunderstorm downburst [J]. Proceedings of the CSEE, 2014, 34(24): 4179-4186. DOI:  10.13334/j.0258-8013.pcsee.2014.24.023.
[32] 王荣鹏, 王干军, 吴毅江. 侧向横风作用下角钢输电塔的动力响应研究 [J]. 南方能源建设, 2015, 2(1): 88-91. DOI:  10.16516/j.gedi.issn2095-8676.2015.01.017.

WANG R P, WANG G J, WU Y J. Research on dynamic responses of a transmission tower with angle section members under lateral wind loadings [J]. Energy construction, 2015, 2(1): 88-91. DOI:  10.16516/j.gedi.issn2095-8676.2015.01.017.
[33] 卢哲刚, 姚谏. 向量式有限元——一种新型的数值方法 [J]. 空间结构, 2012, 18(1): 85-91. DOI:  10.13849/j.issn.1006-6578.2012.01.015.

LU Z G, YAO J. Vector form intrinsic finite element: a new numerical method [J]. Spatial structures, 2012, 18(1): 85-91. DOI:  10.13849/j.issn.1006-6578.2012.01.015.
[34] 姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究 [J]. 工程力学, 2015, 32(11): 63-70. DOI:  10.6052/j.issn.1000-4750.2013.08.0795.

YAO D, SHEN G H, PAN F, et al. Wind-induced dynamic response of transmission tower using vector-form intrinsic finite element method [J]. Engineering mechanics, 2015, 32(11): 63-70. DOI:  10.6052/j.issn.1000-4750.2013.08.0795.
[35] 陈建稳, 袁广林, 刘涛, 等. 数值模型对输电铁塔内力和变形的影响分析 [J]. 山东科技大学学报(自然科学版), 2009, 28(1): 40-45. DOI:  10.3969/j.issn.1672-3767.2009.01.008.

CHEN J W, YUAN G L, LIU T, et al. The influence analysis of numerical model on internal force and structural deformation of power transmission tower [J]. Journal of Shandong University of science and technology (natural science), 2009, 28(1): 40-45. DOI:  10.3969/j.issn.1672-3767.2009.01.008.
[36] 贺博, 修娅萍, 赵恒, 等. 强台风下高压输电线路塔—线耦联体系的力学行为仿真分析一: 静力响应分析 [J]. 高压电器, 2016, 52(4): 36-41. DOI:  10.13296/j.1001-1609.hva.2016.04.005.

HE B, XIU Y P, ZHAO H, et al. Simulation analysis of mechanical behavior of high voltage tower-line coupled system under strong typhoons part I: static response analysis [J]. High voltage apparatus, 2016, 52(4): 36-41. DOI:  10.13296/j.1001-1609.hva.2016.04.005.
[37] 毕文哲, 田利. 下击暴流作用下输电塔-线体系倒塌破坏研究 [J]. 工程力学, 2022, 39(增刊1): 78-83. DOI:  10.6052/j.issn.1000-4750.2021.05.S012.

BI W Z, TIAN L. Study on the collapse failure of transmission tower-line system under downburst [J]. Engineering mechanics, 2022, 39(Suppl.1): 78-83. DOI:  10.6052/j.issn.1000-4750.2021.05.S012.
[38] 李军阔, 郜帆, 刘春城, 等. 输电塔倒塌失效模式和主材角钢加固方法研究 [J]. 自然灾害学报, 2023, 32(5): 139-148. DOI:  10.13577/j.jnd.2023.0514.

LI J K, GAO F, LIU C C, et al. Study on failure modes and retrofitting method for leg members of transmission tower [J]. Journal of natural disasters, 2023, 32(5): 139-148. DOI:  10.13577/j.jnd.2023.0514.
[39] 陈廷君, 聂卫平. ±500 kV双回路直流耐张塔真型试验分析 [J]. 南方能源建设, 2015, 2(增刊1): 55-59. DOI:  10.16516/j.gedi.issn2095-8676.2015.S1.012.

CHEN T J, NIE W P. Full-scale test analysis for strain tower applied in UHV DC double-circuit transmission line [J]. Southern energy construction, 2015, 2(Suppl.1): 55-59. DOI:  10.16516/j.gedi.issn2095-8676.2015.S1.012.
[40] 钱程, 沈国辉, 郭勇, 等. 节点半刚性对输电塔风致响应的影响 [J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089. DOI:  10.3785/j.issn.1008-973X.2017.06.004.

QIAN C, SHEN G H, GUO Y, et al. Influence of semi-rigid connections on wind-induced responses of transmission towers [J]. Journal of Zhejiang University (engineering science), 2017, 51(6): 1082-1089. DOI:  10.3785/j.issn.1008-973X.2017.06.004.
[41]

LI J K, GAO F, WANG L H, et al. Collapse mechanism of transmission tower subjected to strong wind load and dynamic response of tower-line system [J]. Energies, 2022, 15(11): 3925. DOI:  10.3390/en15113925.
[42]

LI Y Q, CHEN Y, SHEN G H, et al. Member capacity-based progressive collapse analysis of transmission towers under wind load [J]. Wind and structures, 2021, 33(4): 317-329. DOI:  10.12989/was.2021.33.4.317.
[43] 宋子良, 南阳, 张世杰. 强风作用下高压输电塔破坏分析 [J]. 无线互联科技, 2021, 18(8): 100-101. DOI:  10.3969/j.issn.1672-6944.2021.08.048.

SONG Z L, NAN Y, ZHANG S J. Analysis on the damage of high voltage transmission tower under strong wind [J]. Wireless internet technology, 2021, 18(8): 100-101. DOI:  10.3969/j.issn.1672-6944.2021.08.048.
[44]

PATIL H, DOSHI G, NAPA P R, et al. Failure analysis of transmission line tower: a case study [J]. The IUP journal of structural engineering, 2010, 3(1): 20-27.
[45] 宋雪祺, 邓洪洲, 杨子烨, 等. 基于谱分析法考虑高阶振型大跨越输电塔风振响应分析 [J]. 结构工程师, 2020, 36(4): 90-97. DOI:  10.15935/j.cnki.jggcs.2020.04.013.

SONG X Q, DENG H Z, YANG Z Y, et al. Analysis on wind-induced responses of long-span transmission tower based on spectral analysis method considering higher vibration modes [J]. Structural engineers, 2020, 36(4): 90-97. DOI:  10.15935/j.cnki.jggcs.2020.04.013.
[46] 张庆华, 顾明. 典型格构式结构风荷载及风致响应规范比较 [J]. 振动与冲击, 2015, 34(6): 140-145. DOI:  10.13465/j.cnki.jvs.2015.06.027.

ZHANG Q H, GU M. Comparison among wind loads and wind-induced responses of typical lattice structures obtained using various codes [J]. Journal of vibration and shock, 2015, 34(6): 140-145. DOI:  10.13465/j.cnki.jvs.2015.06.027.
[47]

VETTORETTO G, LI Z C, AFFOLTER C. Evaluation of the ultimate collapse load of a high-voltage transmission tower under excessive wind loads [J]. Buildings, 2023, 13(2): 513. DOI:  10.3390/buildings13020513.
[48] 金传领, 万瑜, 华坤, 等. 台风荷载作用下输电塔动力响应及塔失效模式分析 [C]//2021年工业建筑学术交流会. 北京: 中冶建筑研究总院有限公司, 2021.

JIN C L, WAN Y, HUA K, et al. Dynamic response and failure mode analysis of transmission tower under typhoon load [C]//2021 Industrial Architecture Academic Exchange Conference. Beijing: MCC Construction Research Institute Co. , Ltd., 2021.
[49] 伍川, 杨晓辉, 赵鹏飞, 等. 基于塔线体系的风荷载作用下输电铁塔薄弱杆件分析 [J]. 中国工程机械学报, 2022, 20(6): 504-509. DOI:  10.15999/j.cnki.311926.2022.06.004.

WU C, YANG X H, ZHAO P F, et al. Analysis on weak element of transmission tower under wind load based on tower line system [J]. Chinese journal of construction machinery, 2022, 20(6): 504-509. DOI:  10.15999/j.cnki.311926.2022.06.004.
[50] 张庆华, 顾明. 基于高频天平测力试验的500 kV单回路输电塔风致响应研究 [J]. 振动与冲击, 2014, 33(4): 156-160,172. DOI:  10.13465/j.cnki.jvs.2014.04.027.

ZHANG Q H, GU M. Wind-induced response of a 500 kV single-circuit transmission tower based on high-frequency force-balance technique [J]. Journal of vibration and shock, 2014, 33(4): 156-160,172. DOI:  10.13465/j.cnki.jvs.2014.04.027.
[51]

DENG H Z, XU H J, DUAN C Y, et al. Experimental and numerical study on the responses of a transmission tower to skew incident winds [J]. Journal of wind engineering and industrial aerodynamics, 2016, 157: 171-188. DOI:  10.1016/j.jweia.2016.05.010.