[1] 高鹏. 华龙一号安全重要压力变送器设备鉴定研究 [J]. 南方能源建设, 2022, 9(2): 107-112. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.015.

GAO P. Research on equipment qualification for pressure transmitter important to safety of HPR1000 [J]. Southern energy construction, 2022, 9(2): 107-112. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.015.
[2] 雷川, 程鹏, 张智军. 高温气冷堆示范工程反应堆保护系统调试工具研发与应用 [J]. 南方能源建设, 2023, 10(6): 153-159. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.018.

LEI C, CHENG P, ZHANG Z J. R&D and application of commissioning tools for reactor protection system of high-temperature gas-cooled reactor-pebble-bed module [J]. Southern energy construction, 2023, 10(6): 153-159. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.018.
[3] 张玉祯, 廖佰凤, 汪静, 等. 压水堆核电站工业供汽系统技术可行性研究 [J]. 南方能源建设, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.

ZHANG Y Z, LIAO B F, WANG J, et al. Feasibility research in the technology for industrial steam supply by PWR nuclear power plant [J]. Southern energy construction, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.
[4] 孙婧, 马秀歌, 陈巧艳. 事故后安全壳内环境条件计算分析 [J]. 南方能源建设, 2015, 2(4): 53-56. DOI:  10.16516/j.gedi.issn2095-8676.2015.04.008.

SUN J, MA X G, CHEN Q Y. Computational analysis of environment condition inside containment after accident [J]. Southern energy construction, 2015, 2(4): 53-56. DOI:  10.16516/j.gedi.issn2095-8676.2015.04.008.
[5]

YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. Journal of nuclear materials, 2015, 467: 703-716. DOI:  10.1016/j.jnucmat.2015.10.019.
[6]

DRYEPONDT S, UNOCIC K A, HOELZER D T, et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding [J]. Journal of nuclear materials, 2018, 501: 59-71. DOI:  10.1016/j.jnucmat.2017.12.035.
[7]

QIU B W, WANG J, DENG Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding [J]. Nuclear engineering and technology, 2020, 52(1): 1-13. DOI:  10.1016/j.net.2019.07.030.
[8]

ARTZ E. Creep of dispersion strengthened materials: a critical assessment [J]. Res mechanica, 1991, 31: 399-453. DOI:  10.22028/D291-23975.
[9]

BÉRARD P, BARTOUT J D, REYTIER M, et al. Viscoplastic behavior of a FeCrAl alloy for high temperature steam electrolysis (HTSE) sealing applications between 700°C and 900°C [J]. Materials science and engineering A, 2011, 528(12): 4092-4097. DOI:  10.1016/j.msea.2011.01.050.
[10]

KAMIKAWA R, UKAI S, KASAI S, et al. Cooperative grain boundary sliding in creep deformation of FeCrAl-ODS steels at high temperature and low strain rate [J]. Journal of nuclear materials, 2018, 511: 591-597. DOI:  10.1016/j.jnucmat.2018.04.050.
[11]

YANO Y, TANNO T, OKA H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions [J]. Journal of nuclear materials, 2017, 487: 229-237. DOI:  10.1016/j.jnucmat.2017.02.021.
[12]

GUSSEV M N, BYUN T S, YAMAMOTO Y, et al. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding [J]. Journal of nuclear materials, 2015, 466: 417-425. DOI:  10.1016/j.jnucmat.2015.08.030.
[13]

WANG Y J, ISHII A, OGATA S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics [J]. Materials transactions, 2012, 53(1): 156-160. DOI:  10.2320/matertrans.MD201122.
[14]

NIE K, WU W P, ZHANG X L, et al. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel [J]. Journal of materials science, 2017, 52(4): 2180-2191. DOI:  10.1007/s10853-016-0506-3.
[15]

BHATIA M A, MATHAUDHU S N, SOLANKI K N. Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys [J]. Acta materialia, 2015, 99: 382-391. DOI:  10.1016/j.actamat.2015.07.068.
[16]

PAL S, MERAJ M, DENG C. Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations [J]. Computational materials science, 2017, 126: 382-392. DOI:  10.1016/j.commatsci.2016.10.013.
[17]

PAL S, MERAJ M. Structural evaluation and deformation features of interface of joint between nano-crystalline Fe-Ni-Cr alloy and nano-crystalline Ni during creep process [J]. Materials & design, 2016, 108: 168-182. DOI:  10.1016/j.matdes.2016.06.086.
[18]

MERAJ M, PAL S. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal [J]. Journal of molecular modeling, 2017, 23(11): 309. DOI:  10.1007/s00894-017-3481-y.
[19]

ZHAO F, ZHANG J, HE C W, et al. Molecular dynamics simulation on creep behavior of nanocrystalline TiAl alloy [J]. Nanomaterials, 2020, 10(9): 1693. DOI:  10.3390/nano10091693.
[20]

YAMAKOV V, WOLF D, PHILLPOT S R, et al. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation [J]. Acta materialia, 2002, 50(1): 61-73. DOI:  10.1016/S1359-6454(01)00329-9.
[21]

KEBLINSKI P, WOLF D, GLEITER H. Molecular-dynamics simulation of grain-boundary diffusion creep [J]. Interface science, 1998, 6(3): 205-212. DOI:  10.1023/A:1008664218857.
[22]

YAMAKOV V, WOLF D, PHILLPOT S R, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J]. Nature materials, 2004, 3(1): 43-47. DOI:  10.1038/nmat1035.
[23]

ZHANG F, LIU Z, ZHOU J Q. Molecular dynamics simulation of micro-mechanical deformations in polycrystalline copper with bimodal structures [J]. Materials letters, 2016, 183: 261-264. DOI:  10.1016/j.matlet.2016.07.122.
[24]

YAO H, YE T Z, YU W S, et al. Atomic-scale investigation of creep behavior and deformation mechanism in nanocrystalline FeCrAl alloys [J]. Materials & design, 2021, 206: 109766. DOI:  10.1016/j.matdes.2021.109766.
[25] 郁金南. 材料辐照效应 [M]. 北京: 化学工业出版社, 2007: 32-137.

YU J N. Radiation effects of materials [M]. Beijing: Chemical Industry Press, 2007: 132-137.
[26]

ZHANG M, PENG W X, ZHANG H L, et al. The effect of PKA directions on the primary radiation damage in the alpha iron nanowires [J]. Materials chemistry and physics, 2019, 232: 16-22. DOI:  10.1016/j.matchemphys.2019.04.038.
[27]

SAHI Q U A, KIM Y S. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies [J]. Materials research express, 2018, 5(4): 046518. DOI:  10.1088/2053-1591/aabb6f.
[28]

CAMPAÑÁ C, BOYLE K P, MILLER R E. Grain boundary motion assisted via radiation cascades in bcc Fe [J]. Physical review B, 2008, 78(13): 134114. DOI:  10.1103/PhysRevB.78.134114.
[29]

ABRIKOSOV I A, PONOMAREVA A V, BARANNIKOVA S A, et al. Multiscale approach to theoretical simulations of materials for nuclear energy applications: Fe-Cr and Zr-based alloys [J]. MRS online proceedings library, 2013, 1514(1): 3-14. DOI:  10.1557/opl.2013.43.
[30]

WONG K L, LEE H J, SHIM J H, et al. Multiscale modeling of point defect interactions in Fe–Cr alloys [J]. Journal of nuclear materials, 2009, 386-388: 227-230. DOI:  10.1016/j.jnucmat.2008.12.092.
[31]

MALERBA L, TERENTYEV D, OLSSON P, et al. Molecular dynamics simulation of displacement cascades in Fe-Cr alloys [J]. Journal of nuclear materials, 2004, 329-333: 1156-1160. DOI:  10.1016/j.jnucmat.2004.04.270.
[32]

TERENTYEV D, MALERBA L, BARASHEV A V. On the correlation between self-interstitial cluster diffusivity and irradiation-induced swelling in Fe-Cr alloys [J]. Philosophical magazine letters, 2005, 85(11): 587-594. DOI:  10.1080/09500830500383563.
[33]

EDMONDSON P D, BRIGGS S A, Y. YAMAMOTO N, et al. Irradiation-enhanced α′ precipitation in model FeCrAl alloys [J]. Scripta materialia, 2016, 116: 112-116. DOI:  10.1016/j.scriptamat.2016.02.002.
[34]

YE T Z, YAO H, WU Y W, et al. Primary radiation damage characteristics in displacement cascades of FeCrAl alloys [J]. Journal of nuclear materials, 2021, 549: 152909. DOI:  10.1016/j.jnucmat.2021.152909.
[35]

HIREL P. Atomsk: A tool for manipulating and converting atomic data files [J]. Computer physics communications, 2015, 197: 212-219. DOI:  10.1016/j.cpc.2015.07.012.
[36]

AGHAMIRI S M S, SOWA T, UKAI S, et al. Microstructure and texture evolution and ring-tensile properties of recrystallized FeCrAl ODS cladding tubes [J]. Materials science and engineering: A, 2020, 771: 138636. DOI:  10.1016/j.msea.2019.138636.
[37]

AMARA H, FU C C, SOISSON R, et al. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering [J]. Physical review B, 2010, 81(17): 174101. DOI:  10.1103/PhysRevB.81.174101.
[38]

PLIMPTON, STEVE, THOMPSON, et al. Molecular dynamics simulations from SNL's large-scale atomic/molecular massively parallel simulator (LAMMPS) [J]. 2011. (查阅网上资料, 未找到本条文献信息, 请确认)
[39]

LIAO X C, GONG H F, CHEN Y C, et al. Interatomic potentials and defect properties of Fe–Cr–Al alloys [J]. Journal of nuclear materials, 2020, 541: 152421. DOI:  10.1016/j.jnucmat.2020.152421.
[40]

MUKHERJEE A K, BIRD J E, DORN J E. Experimental correlations for high-temperature creep [J]. ASM transactions quarterly, 1969, 62(1): 155.
[41]

SWEET R T, GEORGE N M, MALDONADO G I, et al. Fuel performance simulation of iron-chrome-aluminum (FeCrAl) cladding during steady-state LWR operation [J]. Nuclear engineering and design, 2018, 328: 10-26. DOI:  10.1016/j.nucengdes.2017.11.043.
[42]

KWON J, KIM W, HONG J H. Comparison of the primary damage states in iron and nickel by molecular dynamics simulations [J]. Radiation Effects and Defects in Solids, 2006, 161(4): 207-218. DOI:  10.1080/10420150600704013.
[43]

ZINKLE S J. Microstructure of ion irradiated ceramic insulators [J]. Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, 1994, 91(1/4): 234-246. DOI:  10.1016/0168-583X(94)96224-3.
[44]

WANG Y J, ISHII A, OGATA S. Transition of creep mechanism in nanocrystalline metals [J]. Physical review B, 2011, 84(22): 224102. DOI:  10.1103/PhysRevB.84.224102.
[45]

NABBARRO F R N. Deformation of crystals by motion of single ions [R]. London: Physical Society, 1948: 1-19.
[46]

HERRING C. Diffusional viscosity of a polycrystalline solid [J]. Journal of applied physics, 1950, 21(5): 437-445. DOI:  10.1063/1.1699681.
[47]

COBLE R L. A model for boundary diffusion controlled creep in polycrystalline materials [J]. Journal of applied physics, 1963, 34(6): 1679-1682. DOI:  10.1063/1.1702656.
[48]

GIFKINS R C. Diffusional creep mechanisms [J]. Journal of the American ceramic society, 1968, 51(2): 69-72. DOI:  10.1111/j.1151-2916.1968.tb11838.x.
[49]

LÜTHY H, WHITE R A, SHERBY O D. Grain boundary sliding and deformation mechanism maps [J]. Materials science and engineering, 1979, 39(2): 211-216. DOI:  10.1016/0025-5416(79)90060-0.
[50]

PAL S, REDDY K V, SPEAROT D E. Zr segregation in Ni-Zr alloy: implication on deformation mechanism during shear loading and bending creep [J]. Journal of materials science, 2020, 55(14): 6172-6186. DOI:  10.1007/s10853-020-04411-1.
[51]

ASHKENAZY Y, AVERBACK R S. Irradiation induced grain boundary flow-a new creep mechanism at the nanoscale [J]. Nano letters, 2012, 12(8): 4084-4089. DOI:  10.1021/nl301554k.