[1] 朱蓉, 石文辉, 王阳, 等. 我国风电开发利用的生态和气候环境效应研究建议 [J]. 中国工程科学, 2018, 20(3): 39-43. DOI:  10.15302/J-SSCAE-2018.03.006.

ZHU R, SHI W H, WANG Y, et al. Research suggestions for ecological and climatic environmental effects of wind power development in China [J]. Strategic study of CAE, 2018, 20(3): 39-43. DOI:  10.15302/J-SSCAE-2018.03.006.
[2] 崔杨, 陈正洪. 光伏电站对局地气候的影响研究进展 [J]. 气候变化研究进展, 2018, 14(6): 593-601. DOI:  10.12006/j.issn.1673-1719.2018.072.

CUI Y, CHEN Z H. Research progresses of the impacts of photovoltaic power plants on local climate [J]. Advances in climate change research, 2018, 14(6): 593-601. DOI:  10.12006/j.issn.1673-1719.2018.072.
[3]

KEITH D W, DE CAROLIS J F, DEN KENBERGER D C, et al. The influence of large-scale wind power on global climate [J]. Proceedings of the national academy of sciences of the United States of America, 2004, 101(46): 16115-16120. DOI:  10.1073/pnas.0406930101.
[4]

BARRIE D B, KIRK-DAVIDOFF D B. Weather response to management of a large wind turbine array [J]. Atmospheric chemistry & physics, 2009, 9(1): 2917-2931. DOI:  10.5194/acpd-9-2917-2009.
[5] 陈正洪, 何飞, 崔杨, 等. 近20年来风电场(群)对气候的影响研究进展 [J]. 气候变化研究进展, 2018, 14(4): 381-391. DOI:  10.12006/j.issn.1673-1719.2017.009.

CHEN Z H, HE F, CUI Y, et al. Advances in research of influence on climate of the group of wind farms in past 20 years [J]. Advances in climate change research, 2018, 14(4): 381-391. DOI:  10.12006/j.issn.1673-1719.2017.009.
[6] 李培都, 高晓清. 光伏电站对生态环境气候的影响综述 [J]. 高原气象, 2021, 40(3): 702-710. DOI:  10.7522/j.issn.1000-0534.2020.00020.

LI P D, GAO X Q. The impact of photovoltaic power plants on ecological environment and climate: a literature review [J]. Plateau meteorology, 2021, 40(3): 702-710. DOI:  10.7522/j.issn.1000-0534.2020.00020.
[7] 田政卿, 张勇, 刘向, 等. 光伏电站建设对陆地生态环境的影响: 研究进展与展望 [J]. 环境科学, 2024, 45(1): 239-247. DOI:  10.13227/j.hjkx.202301152.

TIAN Z Q, ZHANG Y, LIU X, et al. Effects of photovoltaic power station construction on terrestrial environment: retrospect and prospect [J]. Environmental science, 2024, 45(1): 239-247. DOI:  10.13227/j.hjkx.202301152.
[8] 吴正人, 路婷婷, 刘梅, 等. 风电场运行对局地边界层气象因素影响 [J]. 太阳能学报, 2020, 41(2): 118-125. DOI:  10.19912/j.0254-0096.2020.02.017.

WU Z R, LU T T, LIU M, et al. Influence of wind farm operation on meteorological factors in boundary layer [J]. Acta energiae solaris sinica, 2020, 41(2): 118-125. DOI:  10.19912/j.0254-0096.2020.02.017.
[9] 赵宗慈, 罗勇, 江滢. 风电场对气候变化影响研究进展 [J]. 气候变化研究进展, 2011, 7(6): 400-406. DOI:  10.3969/j.issn.1673-1719.2011.06.003.

ZHAO Z C, LUO Y, JIANG Y. Advances in assessment on impacts of wind farms upon climate change [J]. Advances in climate change research, 2011, 7(6): 400-406. DOI:  10.3969/j.issn.1673-1719.2011.06.003.
[10] 徐荣会. 干旱区风电场对局地微气象环境的影响研究——以苏尼特右旗朱日和风电场为例 [D]. 呼和浩特: 内蒙古农业大学, 2014.

XU R H. The impact of wind farm on local micro meteorological environment in arid region——taking Zhurihe wind farm as an example [D]. Hohhot: Inner Mongolia Agricultural University, 2014.
[11] 夏馨, 余晔, 董龙翔, 等. 风电场建设前后近地面湍流强度变化特征 [J]. 高原气象, 2022, 41(4): 1062-1073. DOI:  10.7522/j.issn.1000-0534.2021.00005.

XIA X, YU Y, DONG L X, et al. Characteristics of near surface turbulence intensity before and after wind farm construction [J]. Plateau meteorology, 2022, 41(4): 1062-1073. DOI:  10.7522/j.issn.1000-0534.2021.00005.
[12] 崔冬林, 刘晓亚, 胡威, 等. 运行风电场内局地湍流变化分析方法及其影响探讨 [J]. 太阳能学报, 2017, 38(9): 2589-2596. DOI:  10.19912/j.0254-0096.2017.09.037.

CUI D L, LIU X Y, HU W, et al. Analysis method and influence discussion of local turbulence in wind farm [J]. Acta energiae solaris sinica, 2017, 38(9): 2589-2596. DOI:  10.19912/j.0254-0096.2017.09.037.
[13]

ZHANG W, MARKFORT C D, PORTÉ-AGEL F. Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges [J]. Environmental research letters, 2013, 8(1): 015002. DOI:  10.1088/1748-9326/8/1/015002.
[14]

LOGANATHAN B, MUSTARY I, CHOWDHURY H, et al. Effect of turbulence on a Savonius type micro wind turbine [J]. Energy procedia, 2017, 110: 549-554. DOI:  10.1016/j.egypro.2017.03.183.
[15]

CHRISTIANSEN M B, HASAGER C B. Using airborne and satellite SAR for wake mapping offshore [J]. Wind energy, 2006, 9(5): 437-455. DOI:  10.1002/we.196.
[16]

HASAGER C B, MOUCHE A, BADGER M, et al. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT [J]. Remote sensing of environment, 2015, 156: 247-263. DOI:  10.1016/j.rse.2014.09.030.
[17]

BARTHELMIE R J, CRIPPA P, WANG H, et al. 3D wind and turbulence characteristics of the atmospheric boundary layer [J]. Bulletin of the American meteorological society, 2014, 95(5): 743-756. DOI:  10.1175/BAMS-D-12-00111.1.
[18]

TORRES GARCIA E, AUBRUN S, COUPIAC O, et al. Statistical characteristics of interacting wind turbine wakes from a 7-month LiDAR measurement campaign [J]. Renewable energy, 2019, 130: 1-11. DOI:  10.1016/j.renene.2018.06.030.
[19] 胡菊. 大型风电场建设对区域气候影响的数值模拟研究 [D]. 兰州: 兰州大学, 2012.

HU J. Numerical simulation research on impact of large-scale wind farms on regional climate [D]. Lanzhou: Lanzhou University, 2012.
[20]

VAUTARD R, THAIS F, TOBIN I, et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms [J]. Nature communications, 2014, 5: 3196. DOI:  10.1038/ncomms4196.
[21]

PAIVA L M S, BODSTEIN G C R, MENEZES W F. Numerical simulation of atmospheric boundary layer flow over isolated and vegetated hills using RAMS [J]. Journal of wind engineering and industrial aerodynamics, 2009, 97(9/10): 439-454. DOI:  10.1016/j.jweia.2009.07.006.
[22]

BAIDYA ROY S. Simulating impacts of wind farms on local hydrometeorology [J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 491-498. DOI:  10.1016/j.jweia.2010.12.013.
[23]

FIEDLER B H, BUKOVSKY M S. The effect of a giant wind farm on precipitation in a regional climate model [J]. Environmental research letters, 2011, 6(4): 045101. DOI:  10.1088/1748-9326/6/4/045101.
[24]

HANCOCK P E, ZHANG S. A wind-tunnel simulation of the wake of a large wind turbine in a weakly unstable boundary layer [J]. Boundary-layer meteorology, 2015, 156(3): 395-413. DOI:  10.1007/s10546-015-0037-5.
[25] 王姝, 刘树华, 陈建洲, 等. 使用WRF-Fitch对湖区风电场风力发电机尾流效应特征的数值模拟 [J]. 北京大学学报(自然科学版), 2018, 54(3): 605-615. DOI:  10.13209/j.0479-8023.2017.187.

WANG S, LIU S H, CHEN J Z, et al. Case studies: simulation on characteristics of wind turbine wake effect in a lake-side wind farm with WRF-Fitch [J]. Acta scientiarum naturalium universitatis pekinensis, 2018, 54(3): 605-615. DOI:  10.13209/j.0479-8023.2017.187.
[26] 艾泽, 常蕊, 陈正洪, 等. 不同下垫面下风电场对夏季气候的影响 [J]. 高原气象, 2022, 41(4): 1017-1029. DOI:  10.7522/j.issn.1000-0534.2021.00071.

AI Z, CHANG R, CHEN Z H, et al. The impact of wind farm on local climate under different underlying surface conditions during summertime [J]. Plateau meteorology, 2022, 41(4): 1017-1029. DOI:  10.7522/j.issn.1000-0534.2021.00071.
[27] 张双益, 胡非. 大气边界层与风力发电的相互作用研究综述 [J]. 高原气象, 2017, 36(4): 1127-1137. DOI:  10.7522/j.issn.1000-0534.2016.00095.

ZHANG S Y, HU F. Review on study of atmospheric boundary layer and wind power generation interaction [J]. Plateau meteorology, 2017, 36(4): 1127-1137. DOI:  10.7522/j.issn.1000-0534.2016.00095.
[28] 王强. 风电场尾流效应及其对大气环境影响的中尺度数值模拟研究 [D]. 杭州: 浙江大学, 2020. DOI:  10.27461/d.cnki.gzjdx.2020.000048.

WANG Q. Study on mesoscale numerical simularion of wake effect of WindFarm & its impact on atmospheric environment [D]. Hangzhou: Zhejiang University, 2022. DOI:  10.27461/d.cnki.gzjdx.2020.000048.
[29] 陈伯龙, 高晓清, 左洪超, 等. 大型风电场群风电场布局间距的模型研究 [J]. 高原气象, 2012, 31(6): 1746-1752.

CHEN B L, GAO X Q, ZUO H C, et al. Model study on the optimal interval distance among wind farms in large-scale wind farm group [J]. Plateau meteorology, 2012, 31(6): 1746-1752.
[30] 胡菊, 王姝. 甘肃酒泉大型风电基地对区域气候的影响研究 [J]. 全球能源互联网, 2018, 1(2): 120-128. DOI:  10.19705/j.cnki.issn2096-5125.2018.02.003.

HU J, WANG S. Impact of large-scale wind power base located in Gansu Jiuquan on regional climate [J]. Journal of global energy interconnection, 2018, 1(2): 120-128. DOI:  10.19705/j.cnki.issn2096-5125.2018.02.003.
[31]

LUO L H, ZHUANG Y L, DUAN Q T, et al. Local climatic and environmental effects of an onshore wind farm in North China [J]. Agricultural and forest meteorology, 2021, 308-309: 108607. DOI:  10.1016/j.agrformet.2021.108607.
[32]

FRANDSEN S T, JØRGENSEN H E, BARTHELMIE R, et al. The making of a second generation wind farm efficiency model complex [J]. Wind energy, 2009, 12(5): 445-458. DOI:  10.1002/we.351.
[33]

FITCH A C, LUNDQUIST J K, OLSON J B. Mesoscale influences of wind farms throughout a diurnal cycle [J]. Monthly weather review, 2013, 141(7): 2173-2198. DOI:  10.1175/MWR-D-12-00185.1.
[34]

SHARMA V, PARLANGE M B, CALAF M. Perturbations to the spatial and temporal characteristics of the diurnally-varying atmospheric boundary layer due to an extensive wind farm [J]. Boundary-layer meteorology, 2017, 162(2): 255-282. DOI:  10.1007/s10546-016-0195-0.
[35] 李思, 章晓冬, 尕藏程林, 等. 大型风力发电场对华北地区大气影响的数值模拟研究 [J]. 高原气象, 2020, 39(2): 437-444. DOI:  10.7522/j.issn.1000-0534.2019.00112.

LI S, ZHANG X D, GAZANG C L, et al. Numerical simulations of the influence of large-scale wind farms on meteorological conditions in North China [J]. Plateau meteorology, 2020, 39(2): 437-444. DOI:  10.7522/j.issn.1000-0534.2019.00112.
[36] 刘磊, 高晓清, 陈伯龙, 等. 大规模风电场建成后对风能资源影响的研究 [J]. 高原气象, 2012, 31(4): 1139-1144.

LIU L, GAO X Q, CHEN B L, et al. Preliminary estimates of wind energy resources deficit in large wind farm [J]. Plateau meteorology, 2012, 31(4): 1139-1144.
[37] 蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展 [J]. 地球科学进展, 2019, 34(10): 1038-1049. DOI:  10.11867/j.issn.1001-8166.2019.10.1038.

JIANG J X, YANG L W, LI Z C, et al. Progress in the research on the impact of wind farms on climate and environment [J]. Advances in earth science, 2019, 34(10): 1038-1049. DOI:  10.11867/j.issn.1001-8166.2019.10.1038.
[38] 路婷婷. 基于大涡模拟的风力机对区域大气边界层特性影响研究 [D]. 北京: 华北电力大学, 2017.

LU T T. Study on the influence of wind turbine on the characteristics of regional atmospheric boundary layer based on large eddy simulation [D]. Beijing: North China Electric Power University, 2017.
[39]

BAIDYA ROY S, TRAITEUR J J. Impacts of wind farms on surface air temperatures [J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(42): 17899-17904. DOI:  10.1073/pnas.1000493107.
[40]

ZHOU L M, TIAN Y H, BAIDYA ROY S, et al. Impacts of wind farms on land surface temperature [J]. Nature climate change, 2012, 2(7): 539-543. DOI:  10.1038/nclimate1505.
[41]

WALSH-THOMAS J M, CERVONE G, AGOURIS P, et al. Further evidence of impacts of large-scale wind farms on land surface temperature [J]. Renewable and sustainable energy reviews, 2012, 16(8): 6432-6437. DOI:  10.1016/j.rser.2012.07.004.
[42] 马兴悦, 余晔, 夏敦胜, 等. 风电场运行对地表温度的影响——以河北张家口北部风电场为例 [J]. 高原气象, 2022, 41(4): 1074-1085. DOI:  10.7522/j.issn.1000-0534.2022.00060.

MA X Y, YU Y, XIA D S, et al. Impacts of wind farms on land surface temperature——a case study on the wind farm in northern Zhangjiakou, Hebei [J]. Plateau meteorology, 2022, 41(4): 1074-1085. DOI:  10.7522/j.issn.1000-0534.2022.00060.
[43]

XIA G, CERVARICH M C, ROY S B, et al. Simulating impacts of real-world wind farms on land surface temperature using the WRF model: validation with observations [J]. Monthly weather review, 2017, 145(12): 4813-4836. DOI:  10.1175/MWR-D-16-0401.1.
[44]

CHANG R, ZHU R, GUO P. A case study of land-surface-temperature impact from large-scale deployment of wind farms in China from Guazhou [J]. Remote sensing, 2016, 8(10): 790. DOI:  10.3390/rs8100790.
[45]

CERVARICH M C, ROY S B, ZHOU L M. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions [J]. Energy procedia, 2013, 40: 530-536. DOI:  10.1016/j.egypro.2013.08.061.
[46]

PAN Y, YAN C, ARCHER C L. Precipitation reduction during Hurricane Harvey with simulated offshore wind farms [J]. Environmental research letters, 2018, 13(8): 084007. DOI:  10.1088/1748-9326/aad245.
[47]

MURALI A, RAJAGOPALAN R G. Numerical simulation of multiple interacting wind turbines on a complex terrain [J]. Journal of wind engineering and industrial aerodynamics, 2017, 162: 57-72. DOI:  10.1016/j.jweia.2017.01.005.
[48] 赵延岩, 李振朝, 高晓清, 等. 戈壁大型光伏电站夏季晴天地表通量特征 [J]. 太阳能学报, 2021, 42(5): 138-144. DOI:  10.19912/j.0254-0096.tynxb.2020-0844.

ZHAO Y Y, LI Z C, GAO X Q, et al. Surface flux characteristics of large scale photovoltaic power station in gobi on sunny days in summer [J]. Acta energiae solaris sinica, 2021, 42(5): 138-144. DOI:  10.19912/j.0254-0096.tynxb.2020-0844.
[49]

ZHANG X H, XU M. Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques [J]. Remote sensing, 2020, 12(11): 1825. DOI:  10.3390/rs12111825.
[50]

LI S, WEIGAND J, GANGULY S. The potential for climate impacts from widespread deployment of utility-scale solar energy installations: an environmental remote sensing perspective [J]. Journal of remote sensing & GIS, 2017, 6(1): 1-6. DOI: 10.4172/2469-4134.1000190. (查阅网上资料,未找到期号信息,请确认)
[51]

FTHENAKIS V, YU Y H. Analysis of the potential for a heat island effect in large solar farms [C]//Proceedings of 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, June 16-21, 2013. New York: IEEE, 2013: 3362-3366. DOI:  10.1109/PVSC.2013.6745171.
[52]

MILLSTEIN D, MENON S. Regional climate consequences of largescale cool roof and photovoltaic array deployment [J]. Environmental research letters, 2011, 6(3): 034001. DOI:  10.1088/1748-9326/6/3/034001.
[53]

TAHA H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas [J]. Solar energy, 2013, 91: 358-367. DOI:  10.1016/j.solener.2012.09.014.
[54] 杨丽薇, 高晓清, 吕芳, 等. 光伏电站对格尔木荒漠地区太阳辐射场的影响研究 [J]. 太阳能学报, 2015, 36(9): 2160-2166. DOI:  10.3969/j.issn.0254-0096.2015.09.019.

YANG L W, GAO X Q, LÜ F, et al. Study on the impact of large solar farm on radiation field in desert areas of Golmud [J]. Acta energiae solaris sinica, 2015, 36(9): 2160-2166. DOI:  10.3969/j.issn.0254-0096.2015.09.019.
[55] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响 [J]. 水土保持通报, 2017, 37(3): 15-21. DOI:  10.13961/j.cnki.stbctb.2017.03.003.

YIN D Y, MA L, QU J J, et al. Effect of large photovoltaic power station on microclimate of desert region in Gonghe basin [J]. Bulletin of soil and water conservation, 2017, 37(3): 15-21. DOI:  10.13961/j.cnki.stbctb.2017.03.003.
[56]

CHANG R, SHEN Y B, LUO Y, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China [J]. Renewable energy, 2018, 118: 131-137. DOI:  10.1016/j.renene.2017.11.007.
[57]

JIANG J X, GAO X Q, LV Q Q, et al. Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas [J]. Renewable energy, 2021, 174: 157-169. DOI:  10.1016/j.renene.2021.03.148.
[58] 高晓清, 杨丽薇, 吕芳, 等. 光伏电站对格尔木荒漠地区土壤温度的影响研究 [J]. 太阳能学报, 2016, 37(6): 1439-1445. DOI:  10.3969/j.issn.0254-0096.2016.06.012.

GAO X Q, YANG L W, LYU F, et al. Effect of PV farm on soil temperature in Golmud desert area [J]. Acta energiae solaris sinica, 2016, 37(6): 1439-1445. DOI:  10.3969/j.issn.0254-0096.2016.06.012.
[59] 蒋俊霞, 高晓清. 光伏系统气候效应及影响机理研究进展 [J]. 高原气象, 2022, 41(4): 953-962. DOI:  10.7522/j.issn.1000-0534.2022.00077.

JIANG J X, GAO X Q. Research progress on climate effect and influence mechanism of photovoltaic systems [J]. Plateau meteorology, 2022, 41(4): 953-962. DOI:  10.7522/j.issn.1000-0534.2022.00077.
[60]

LI S, WEIGAND J, GANGULY S. The potential for climate impacts from widespread deployment of utility-scale solar energy installations: an environmental remote sensing perspective [J]. Journal of remote sensing & GIS, 2017, 6(1): 1-5. DOI: 10.4172/2469-4134.1000190. (查阅网上资料,未找到本条文献信息,且与第50条文献重复,请确认)
[61]

MASSON V, BONHOMME M, SALAGNAC J L, et al. Solar panels reduce both global warming and urban heat island [J]. Frontiers in environmental science, 2014, 2: 81306. DOI:  10.3389/fenvs.2014.00014.
[62]

WANG Y P, TIAN W, ZHU L, et al. Interactions between building integrated photovoltaics and microclimate in urban environments [J]. Journal of solar energy engineering, 2006, 128(2): 168-172. DOI:  10.1115/1.2188533.
[63]

BURG B R, RUCH P, PAREDES S, et al. Effects of radiative forcing of building integrated photovoltaic systems in different urban climates [J]. Solar energy, 2017, 147: 399-405. DOI:  10.1016/j.solener.2017.03.004.
[64]

SALAMANCA F, GEORGESCU M, MAHALOV A, et al. Citywide impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand [J]. Boundary-layer meteorology, 2016, 161(1): 203-221. DOI:  10.1007/s10546-016-0160-y.
[65]

LI Y, KALNAY E, MOTESHARREI S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation [J]. Science, 2018, 361(6406): 1019-1022. DOI:  10.1126/science.aar5629.
[66] 梁红, 魏科, 马骄. 我国西北大规模太阳能与风能发电场建设产生的可能气候效应 [J]. 气候与环境研究, 2021, 26(2): 123-141. DOI:  10.3878/j.issn.1006-9585.2020.19126.

LIANG H, WEI K, MA J. Climate effect assessment of ideal large-scale solar and wind power farms in Northwest China [J]. Climatic and environmental research, 2021, 26(2): 123-141. DOI:  10.3878/j.issn.1006-9585.2020.19126.
[67] 中国气象局. 陆上风电场局地气候效应评估指南: QX/T 709-2024 [S]. 北京: 气象出版社, 2024. (查阅网上资料, 未找到本条文献出版信息, 请确认)

China Meteorological Administration. Guidelines for assessment of local climate effects of onshore wind farms: QX/T 709-2024 [S]. Beijing: China Meteorological Press, 2024.