[1] 刘晋超. 海上大直径单桩基础沉桩施工关键技术研究 [J]. 南方能源建设, 2022, 9(1): 47-51. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.007.

LIU J C. Research on key technologies of pile driving construction for monopile [J]. Southern energy construction, 2022, 9(1): 47-51. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.007.
[2]

HOULSBY G T, BYRNE B W. Suction caisson foundations for offshore wind turbines and anemometer masts [J]. Wind engineering, 2000, 24(4): 249-255. DOI:  10.1260/0309524001495611.
[3] 王欢. 砂土海床大直径单桩基础和桶形基础水平受荷特性研究 [D]. 杭州: 浙江大学, 2020. DOI:  10.27461/d.cnki.gzjdx.2020.002170.

WANG H. Lateral behaviour of offshore monopile and bucket foundations in sand [D]. Hangzhou: Zhejiang University, 2020. DOI:  10.27461/d.cnki.gzjdx.2020.002170.
[4] 樊昂, 李录平, 刘瑞, 等. 不同风速对单桩式海上风电机组塔筒动态特性的影响 [J]. 发电技术, 2024, 45(2): 312-322. DOI:  10.12096/j.2096-4528.pgt.22153.

FAN A, LI L P, LIU R, et al. Research on dynamic characteristics of monopile offshore wind turbine tower under different wind speed conditions [J]. Power generation technology, 2024, 45(2): 312-322. DOI:  10.12096/j.2096-4528.pgt.22153.
[5]

LAU B H. Cyclic behaviour of monopile foundations for offshore wind turbines in clay [D]. Cambridge: University of Cambridge, 2015.
[6]

BURD H J, TABORDA D M G, ZDRAVKOVIĆ L, et al. PISA design model for monopiles for offshore wind turbines: application to a marine sand [J]. Géotechnique, 2020, 70(11): 1048-1066. DOI:  10.1680/jgeot.18.P.277.
[7]

BYRNE B W, HOULSBY G T, BURD H J, et al. PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till [J]. Géotechnique, 2020, 70(11): 1030-1047. DOI:  10.1680/jgeot.18.P.255.
[8]

BYRNE B W, BURD H J, ZDRAVKOVIĆ L, et al. PISA: new design methods for offshore wind turbine monopiles [J]. Revue franç aise de géotechnique, 2019(158): 3. DOI:  10.1051/geotech/2019009.
[9]

API. Recommended Practice 2AWSD——planning, designing and constructing fixed offshore platforms-working stress design (22nd ed) [EB/OL]. Washington, D.C.: American Petroleum Institute (2014-11-11) [2024-04-01]. https://www.api.org/~/media/files/publications/whats%20new/2a-wsd_e22%20pa.pdf.
[10]

REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand [C]//Proceedings of the Offshore Technology Conference, Houston, Texas, May 5-7, 1974. Houston: OTC, 1974: 473-480. DOI:  10.4043/2080-MS.
[11]

WIEMANN J, LESNY W, RICHWIEN W. Evaluation of pile diameter effects on soil-pile stiffness [C]//Proceedings of the 7th German Wind Energy Conference (DEWEK), Wilhelmshaven, Oct. 20-21, 2004. Wilhelmshaven, 2004.
[12]

KLINKVORT R T, HEDEDAL O. Effect of load eccentricity and stress level on monopile support for offshore wind turbines [J]. Canadian geotechnical journal, 2014, 51(9): 966-974. DOI:  10.1139/cgj-2013-0475.
[13]

KLINKVORT R T. Centrifuge modelling of drained lateral pile-soil response: application for offshore wind turbine support structures [D]. Lyngby: Technical University of Denmark, 2013.
[14]

BAYTON S M. Centrifuge modelling of monopiles in sand subject to lateral loading [D]. Sheffield: University of Sheffield, 2020.
[15]

ZANIA V, HEDEDAL O. Friction effects on lateral loading behavior of rigid piles [C]//Proceedings of the GeoCongress 2012, Oakland, California, March 25-29, 2012. Oakland: ASCE, 2012: 366-375. DOI:  10.1061/9780784412121.038.
[16]

JOSTAD H P, DAHL B M, PAGE A, et al. Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand [J]. Géotechnique, 2020, 70(8): 682-699. DOI:  10.1680/jgeot.19.TI.034.
[17]

LIU H Y, KAYNIA A M. Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu [J]. Water science and engineering, 2022, 15(1): 69-77. DOI:  10.1016/j.wse.2021.12.001.
[18]

LI S Z, ZHANG Y H, JOSTAD H P. Drainage conditions around monopiles in sand [J]. Applied ocean research, 2019, 86: 111-116. DOI:  10.1016/j.apor.2019.01.024.
[19]

FAN C C, LONG J H. Assessment of existing methods for predicting soil response of laterally loaded piles in sand [J]. Computers and geotechnics, 2005, 32(4): 274-289. DOI:  10.1016/j.compgeo.2005.02.004.
[20]

SURYASENTANA S K, LEHANE B M. Updated CPT-based p- y formulation for laterally loaded piles in cohesionless soil under static loading [J]. Géotechnique, 2016, 66(6): 445-453. DOI:  10.1680/jgeot.14.P.156.
[21]

MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands [J]. Géotechnique, 1997, 47(2): 255-272. DOI:  10.1680/geot.1997.47.2.255.
[22]

DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects [J]. Journal of engineering mechanics, 2004, 130(6): 622-634. DOI:  10.1061/(ASCE)0733-9399(2004)130:6(622).
[23]

DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy [J]. Journal of engineering mechanics, 2004, 130(11): 1319-1333. DOI:  10.1061/(ASCE)0733-9399(2004)130:11(1319).
[24]

TAIEBAT M, DAFALIAS Y F. SANISAND: simple anisotropic sand plasticity model [J]. International journal for numerical and analytical methods in geomechanics, 2008, 32(8): 915-948. DOI:  10.1002/nag.651.
[25]

DAFALIAS Y F, TAIEBAT M. SANISAND-Z: zero elastic range sand plasticity model [J]. Géotechnique, 2016, 66(12): 999-1013. DOI:  10.1680/jgeot.15.P.271.
[26]

LI X S, WANG Y. Linear representation of steady-state line for sand [J]. Journal of geotechnical and geoenvironmental engineering, 1998, 124(12): 1215-1217. DOI:  10.1061/(ASCE)1090-0241(1998)124:12(1215).
[27]

BAKMAR C L, HEDEDAL O, IBSEN L B. A modified critical state two-surface plasticity model for sand: theory and implementation [R]. Aalborg: Aalborg University, 2008.
[28]

SHEN K, ZHANG Y, KLINKVORT R T, et al. Numerical simulation of suction bucket under vertical tension loading [C]//Proceedings of the Offshore Site Investigation Geotechnics 8th International Conference, London, Sep. 12-14 2017. Society of Underwater Technology, 2017: 488-497. DOI:  10.3723/OSIG17.488.