[1] 闵巧玲. 复合筒型基础稳性及拖航运动特性分析 [D]. 天津: 天津大学, 2018.

MINQ L. Analysis of stability and towing motion characteristics of composite cylinder foundation [D]. Tianjin: Tianjin University, 2018.
[2]

LIUX Q, ZHANGP Y, ZHAOM J, et al. Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines [J]. Energies, 2019, 12(21): 4108.
[3]

DINGH Y, LIUY G, ZHANGP Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay [J]. Ocean Engineering, 2015, 103(7): 114-122.
[4]

ZHANGP Y, HANY Q, DINGH Y, et al. Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines [J]. Ocean Engineering, 2015, 108(11): 769-777.
[5]

ZHANGP Y, DINGH Y, LEC H. Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy, 2013, 5(6): 063126.
[6] 刘宪庆. 气浮筒型基础拖航稳性和动力响应研究 [D]. 天津: 天津大学, 2012.

LIUX Q. Study on stability and dynamic response of air buoy foundation towing [D]. Tianjin: Tianjin University, 2012.
[7] 丁红岩, 韩彦青, 张浦阳, 等. 气压对海上风电一步式运输安装船稳性的影响 [J]. 天津大学学报(自然科学与工程技术版), 2017, 50(9): 915-920.

DINGH Y, HANY Q, ZHANGP Y, et al. Journal of Tianjin University (Natural Science and Engineering), 2017, 50 (9) 915-920.
[8]

THIAGARAJANK P, MORRIS-THOMASM T, SPARGOA. Heave and pitch response of an offshore platform with air cushion support in shallow water [C]//Anon.Asme International Conference on Offshore Mechanics and Arctic Engineering, British Columbia, June 20-25, 2004. Canada: [s.n.], 2004: 817-823.
[9]

LEEC H, NEWMANJ N. Wave effects on large floating structures with air cushions [J]. Marine Structures, 2000, 13(4): 315-330.
[10] 别社安, 时钟民, 王翎羽, 气浮结构的静浮态分析 [J]. 中国港湾建设, 2000(6): 18-23.

BIES A, SHIZ M, WANGL Y. Static floating state analysis of air-floating structure [J]. China Harbour Construction, 2000 (6): 18-23.