[1] 张玉祯, 廖佰凤, 汪静, 等. 压水堆核电站工业供汽系统技术可行性研究 [J]. 南方能源建设, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.

ZHANG Y Z, LIAO B F, WANG J, et al. Feasibility research in the technology for industrial steam supply by PWR nuclear power plant [J]. Southern energy construction, 2022, 9(2): 120-124. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.017.
[2]

MA W M, YUAN Y D, SEHGAL B R. In-vessel melt retention of pressurized water reactors: Historical review and future research needs [J]. Engineering, 2016, 2(1): 103-111. DOI:  10.1016/J.ENG.2016.01.019.
[3]

ESPINOSA-PAREDES G, CAMARGO-CAMARGO R, NUÑEZ-CARRERA A. Severe accident simulation of the Laguna Verde nuclear power plant [J]. Science and technology of nuclear installations, 2012, 2012: 347-347. DOI:  10.1155/2012/209420.
[4]

SCHULZ T L. Westinghouse AP1000 advanced passive plant [J]. Nuclear engineering and design, 2006, 236(14/16): 1547-1557. DOI:  10.1016/j.nucengdes.2006.03.049.
[5] 向清安, 关仲华, 邓纯锐, 等. AP1000 IVR三层熔融池结构评价分析 [J]. 核动力工程, 2013, 34(6): 83-87. DOI:  10.3969/j.issn.0258-0926.2013.06.020.

XIANG Q A, GUAN Z H, DENG C R, et al. An assessment methodology of thee-layers melt configuration during IVR for AP1000 [J]. Nuclear power engineering, 2013, 34(6): 83-87. DOI:  10.3969/j.issn.0258-0926.2013.06.020.
[6]

FAGHIHI F, MIRVAKILI S M, SAFAEI S, et al. Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle [J]. Progress in nuclear energy, 2016, 87: 39-46. DOI:  10.1016/j.pnucene.2015.10.020.
[7]

BOUTEILLE F, AZARIAN G, BITTERMANN D, et al. The EPR overall approach for severe accident mitigation [J]. Nuclear engineering and design, 2006, 236(14/16): 1464-1470. DOI:  10.1016/j.nucengdes.2006.04.013.
[8]

FISCHER M. The severe accident mitigation concept and the design measures for core melt retention of the European Pressurized Reactor (EPR) [J]. Nuclear engineering and design, 2004, 230(1/3): 169-180. DOI:  10.1016/j.nucengdes.2003.11.034.
[9]

PARK R J, HA K S, RHEE B W, et al. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400 [J]. Nuclear engineering and design, 2016, 298: 33-40. DOI:  10.1016/j.nucengdes.2015.12.017.
[10]

XING J, SONG D Y, WU Y X. HPR1000: Advanced pressurized water reactor with active and passive safety [J]. Engineering, 2016, 2(1): 79-87. DOI:  10.1016/J.ENG.2016.01.017.
[11]

SAHA P, AKSAN N, ANDERSEN J, et al. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors [J]. Nuclear engineering and design, 2013, 264: 3-23. DOI:  10.1016/j.nucengdes.2012.07.023.
[12]

SUI D, LU D G, SHANG C Z, et al. Investigation on response of HPR1000 under different mitigation strategies after SGTR accident [J]. Annals of nuclear energy, 2018, 112: 328-336. DOI:  10.1016/j.anucene.2017.10.024.
[13] 马卫民, 元一单, 郭强, 等. 一种带有内部冷却管的双层坩埚堆芯熔融物捕集装置: 110459333A [P]. 2019-11-15.

MA W M, YUAN Y D, GUO Q, et al. Double-layer crucible reactor core melt capturing device with internal cooling tube: 110459333A [P]. 2019-11-15.
[14] 元一单, 李炜, 张丽, 等. 一种多重防御和冷却的堆芯捕集器: 112700892A [P]. 2021-04-23.

YUAN Y D, LI W, ZHANG L, et al. Reactor core catcher with multiple defenses and cooling functions: 112700892A [P]. 2021-04-23.
[15] 马如冰, 盛天佑, 马卫民, 等. 一种基于内置换料水箱的堆芯捕集器系统: 201810756604.7 [P]. 2018-07-11.

MA R B, SHENG T Y, MA W M, et al. Reactor core trap system based on internal replacing water tank: 201810756604.7 [P]. 2018-07-11.
[16] 卢冬华, 梁振辉, 徐海岩, 等. 堆芯捕集器: 205104239U [P]. 2016-03-23.

LU D H, LIANG Z H, XU H Y, et al. Reactor core trap: 205104239U [P]. 2016-03-23.
[17] 黄高峰, 刘鑫, 方立凯, 等. 一种大型非能动压水堆核电厂坩埚型堆芯捕集器: 103177779A [P]. 2013-06-26.

HUANG G F, LIU X, FANG L K, et al. Large passive pressurized water reactor nuclear power plant crucible-type reactor core catcher: 103177779A [P]. 2013-06-26.
[18] 曹帅, 邹树梁, 刘文君, 等. 我国核电经济性评价研究进展及述评 [J]. 科技和产业, 2014, 14(2): 58-62. DOI:  10.3969/j.issn.1671-1807.2014.02.013.

CAO S, ZOU S L, LIU W J, et al. The review of economic evaluation of nuclear power in China [J]. Science technology and industry, 2014, 14(2): 58-62. DOI:  10.3969/j.issn.1671-1807.2014.02.013.
[19] 刘秉文, 詹翼, 黄文修, 等. 核电厂先进建造技术经济性评估方法研究 [J]. 建筑经济, 2018, 39(11): 87-91. DOI:  10.14181/j.cnki.1002-851x.201811087.

LIU B W, ZHAN Y, HUANG W X, et al. Research on economic evaluation method for the advanced construction of nuclear power plant [J]. Construction economy, 2018, 39(11): 87-91. DOI:  10.14181/j.cnki.1002-851x.201811087.
[20] 林达平, 李峰君, 刘美汝, 等. 福建漳州核电厂1、2号机组最终安全分析报告 [R]. 北京: 中国核电工程有限公司, 2024.

LIN D P, LI F J, LIU M R, et al. Final safety analysis report of unit 1 &2 of Fujian Zhangzhou nuclear power plant [R]. Beijing: China Nuclear Power Engineering Co., Ltd, 2024.
[21]

ZHANG Q H, ZHAO W, CHU S N, et al. Research progress of nuclear emergency response robot [J]. IOP conference series: materials science and engineering, 2018, 452(4): 042102. DOI:  10.1088/1757-899X/452/4/042102.
[22] 王猛, 孙宏图, 刘腾, 等. 我国滨海核电厂和候选内陆核电厂近区人口分布比较分析 [C]//中国辐射防护学会. 中国辐射防护学会2015年学术年会论文集. 衡阳: 中国辐射防护学会, 2015: 208-213.

WANG M, SUN H T, LIU T, et al. Comparative analysis of population distribution near coastal nuclear power plants and candidate inland nuclear power plants in China [C]//Chinese Society for Radiation Protection. 2015 Academic Annual Meeting of the Chinese Society for Radiation Protection. Hengyang: Chinese Society for Radiation Protection, 2015: 208-213.
[23] 朱光昱, 张祎王, 郭超, 等. 坩埚式堆芯捕集器熔融物长期冷却过程 [J]. 科学技术与工程, 2024, 24(3): 1060-1065. DOI:  10.12404/j.issn.1671-1815.2302385.

ZHU G Y, ZHANG Y W, GUO C, et al. Long-term cooling process of melt in crucible type core catcher [J]. Science technology and engineering, 2024, 24(3): 1060-1065. DOI:  10.12404/j.issn.1671-1815.2302385.