[1] |
孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究 [J]. 中国电机工程学报, 2020, 40(16): 5179-5191. DOI: 10.13334/j.0258-8013.pcsee.200493.
SUN H D, WANG B C, LI W F, et al. Research on inertia system of frequency response for power system with high penetration electronics [J]. Proceedings of the CSEE, 2020, 40(16): 5179-5191. DOI: 10.13334/j.0258-8013.pcsee.200493. |
[2] |
张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施 [J]. 中国电机工程学报, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425.
ZHANG Z Y, ZHANG N, DU E S, et al. Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics [J]. Proceedings of the CSEE, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425. |
[3] |
陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究 [J]. 中国电机工程学报, 2017, 37(1): 20-26. DOI: 10.13334/j.0258-8013.pcsee.161892.
CHEN G P, LI M J, XU T, et al. Study on technical bottleneck of new energy development [J]. Proceedings of the CSEE, 2017, 37(1): 20-26. DOI: 10.13334/j.0258-8013.pcsee.161892. |
[4] |
秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析 [J]. 电力系统自动化, 2018, 42(9): 36-43. DOI: 10.7500/AEPS20171122007.
QIN X H, SU L N, CHI Y N, et al. Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid [J]. Automation of electric power systems, 2018, 42(9): 36-43. DOI: 10.7500/AEPS20171122007. |
[5] |
鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述 [J]. 中国电力, 2018, 51(1): 51-58. DOI: 10.11930/j.issn.1004-9649.201711236.
LU Z X, TANG H Y, QIAO Y, et al. The impact of power electronics interfaces on power system frequency control: a review [J]. Electric power, 2018, 51(1): 51-58. DOI: 10.11930/j.issn.1004-9649.201711236. |
[6] |
申家锴, 李卫东, 李正文, 等. 计及一次调频死区与限幅的高比例风电电力系统机组组合 [J]. 电网技术, 2022, 46(4): 1326-1334. DOI: 10.13335/j.1000-3673.pst.2021.2283.
SHEN J K, LI W D, LI Z W, et al. Unit commitment of power system with high proportion of wind power considering the deadband and limiter of primary frequency response [J]. Power system technology, 2022, 46(4): 1326-1334. DOI: 10.13335/j.1000-3673.pst.2021.2283. |
[7] |
张谦, 周林, 周雒维, 等. 计及电动汽车充放电静态频率特性的负荷频率控制 [J]. 电力系统自动化, 2014, 38(16): 74-80. DOI: 10.7500/AEPS20131210005.
ZHANG Q, ZHOU L, ZHOU L W, et al. Load frequency control considering charging and discharging static frequency characteristics of electric vehicles [J]. Automation of electric power systems, 2014, 38(16): 74-80. DOI: 10.7500/AEPS20131210005. |
[8] |
O'SULLIVAN J, ROGERS A, FLYNN D, et al. Studying the maximum instantaneous non-synchronous generation in an island system-frequency stability challenges in Ireland [J]. IEEE transactions on power systems, 2014, 29(6): 2943-2951. DOI: 10.1109/TPWRS.2014.2316974. |
[9] |
安琪. 新形势下构建能源技术创新体系思路与措施 [J]. 中国能源, 2020, 42(11): 40-43. DOI: 10.3969/j.issn.1003-2355.2020.11.009.
AN Q. Policy frame and measures for constructing an energy technology innovation system under the new situation [J]. Energy of China, 2020, 42(11): 40-43. DOI: 10.3969/j.issn.1003-2355.2020.11.009. |
[10] |
康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架 [J]. 电力系统自动化, 2017, 41(9): 2-11. DOI: 10.7500/AEPS20170120004.
KANG C Q, YAO L Z. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy [J]. Automation of electric power systems, 2017, 41(9): 2-11. DOI: 10.7500/AEPS20170120004. |
[11] |
中国电力企业联合会. 中国电力行业年度发展报告2020 [M]. 北京: 中国建材工业出版社, 2020.
China Electricity Council. Annual development report of China's power industry [M]. Beijing: China Building Materials Press, 2020. |
[12] |
国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究 [R]. 北京: 国家发展和改革委员会能源研究所, 2015.
Energy Research Institute of the National Development and Reform Commission. China 2050 high renewable energy penetration scenario and roadmap study [R]. Beijing: Energy Research Institute of the National Development and Reform Commission, 2015. |
[13] |
谭雪, 刘俊, 郑宽, 等. 新一轮能源革命下中国电网发展趋势和定位分析 [J]. 中国电力, 2018, 51(8): 49-55. DOI: 10.11930/j.issn.1004-9649.201805061.
TAN X, LIU J, ZHENG K, et al. Research on tendency and positioning of power grid development in the new round energy revolution [J]. Electric power, 2018, 51(8): 49-55. DOI: 10.11930/j.issn.1004-9649.201805061. |
[14] |
任凯奇, 张东英, 黄越辉, 等. 基于新能源出力比例的大规模系统惯量估计 [J]. 电网技术, 2022, 46(4): 1307-1315. DOI: 10.13335/j.1000-3673.pst.2021.0643.
REN K Q, ZHANG D Y, HUANG Y H, et al. Large-scale system inertia estimation based on new energy output ratio [J]. Power system technology, 2022, 46(4): 1307-1315. DOI: 10.13335/j.1000-3673.pst.2021.0643. |
[15] |
GUERRERO J M, VASQUEZ J C, MATAS J, et al. Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization [J]. IEEE transactions on industrial electronics, 2011, 58(1): 158-172. DOI: 10.1109/TIE.2010.2066534. |
[16] |
ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators [J]. IEEE transactions on industrial electronics, 2011, 58(4): 1259-1267. DOI: 10.1109/TIE.2010.2048839. |
[17] |
李清, 陈斌, 徐志华, 等. 虚拟同步发电机及其在混合微电网中的应用 [J]. 电力电子技术, 2018, 52(4): 27-30.
LI Q, CHEN B, XU Z H, et al. VSG technology and its application in hybrid micro-grid [J]. Power electronics, 2018, 52(4): 27-30. |
[18] |
ZHANG W Y, CANTARELLAS A M, ROCABERT J, et al. Synchronous power controller with flexible droop characteristics for renewable power generation systems [J]. IEEE transactions on sustainable energy, 2016, 7(4): 1572-1582. DOI: 10.1109/TSTE.2016.2565059. |
[19] |
ASHABANI M, FREIJEDO F D, GOLESTAN S, et al. Inducverters: PLL-less converters with auto-synchronization and emulated inertia capability [J]. IEEE transactions on smart grid, 2016, 7(3): 1660-1674. DOI: 10.1109/TSG.2015.2468600. |
[20] |
BLAABJERG F, TEODORESCU R, LISERRE M, et al. Overview of control and grid synchronization for distributed power generation systems [J]. IEEE transactions on industrial electronics, 2006, 53(5): 1398-1409. DOI: 10.1109/TIE.2006.881997. |
[21] |
曹炜, 张甜, 傅业盛, 等. 同步调相机增强电力系统惯性和改善频率响应的研究与应用 [J]. 电力系统自动化, 2020, 44(3): 1-10. DOI: 10.7500/AEPS20190429015.
CAO W, ZHANG T, FU Y S, et al. Research and application for increasing inertia and improving frequency response of power system by using synchronous condenser [J]. Automation of electric power systems, 2020, 44(3): 1-10. DOI: 10.7500/AEPS20190429015. |