[1] LUEKING A D, COLE M W. Energy and mass balances related to climate change and remediation [J]. Science of the total environment, 2017, 590-591: 416-429. DOI:  10.1016/j.scitotenv.2016.12.101.
[2] 李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.

LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.
[3]

JEFFERSON M. IPCC fifth assessment synthesis report: "Climate change 2014: longer report": critical analysis [J]. Technological forecasting and social change, 2015, 92: 362-363. DOI:  10.1016/j.techfore.2014.12.002.
[4]

YAUMI A L, BAKAR M Z A, HAMEED B H. Recent advances in functionalized composite solid materials for carbon dioxide capture [J]. Energy, 2017, 124: 461-480. DOI:  10.1016/j.energy.2017.02.053.
[5]

Global CCS Institute. Global status of CCS 2020 [R]. Australia: Global CCS Institute, 2021.
[6] 张治忠, 陈继平, 谭学谦, 等. 天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价 [J]. 南方能源建设, 2023, 10(2): 55-61. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.008.

ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, et al. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant [J]. Southern Energy Construction, 2023, 10(2): 55-61. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.008.
[7]

SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges [J]. Renewable and sustainable energy reviews, 2019, 101: 265-278. DOI:  10.1016/j.rser.2018.11.018.
[8] 张中正. 二氧化碳的吸附分离 [D]. 天津: 天津大学, 2012. DOI:  10.7666/d.D322090.

ZHANG Z Z. Adsorptive separation of carbon dioxide [D]. Tianjin: Tianjin University, 2012. DOI:  10.7666/d.D322090.
[9]

TAO M N, XU N, GAO J Z, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study [J]. Energy & fuels, 2019, 33(1): 474-483. DOI:  10.1021/acs.energyfuels.8b03448.
[10]

SINGH A, STÉPHENNE K. Shell cansolv CO2 capture technology: achievement from first commercial plant [J]. Energy procedia, 2014, 63: 1678-1685. DOI:  10.1016/j.egypro.2014.11.177.
[11]

RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture [J]. International journal of greenhouse gas control, 2016, 51: 106-117. DOI:  10.1016/j.ijggc.2016.04.035.
[12]

IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant [J]. Industrial & engineering chemistry research, 2006, 45(8): 2414-2420. DOI:  10.1021/ie050569e.
[13]

OCHEDI F O, YU J, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review [J]. Environmental Chemistry Letters, 2020. DOI:  10.1007/s10311-020-01093-8.
[14]

SMITH K, XIAO G K, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & fuels, 2014, 28(1): 299-306. DOI:  10.1021/ef4014746.
[15]

COUSINS A, HUANG S E, COTTRELL A, et al. Pilot-scale parametric evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station [J]. Greenhouse gases: science and technology, 2015, 5(1): 7-16. DOI:  10.1002/ghg.1462.
[16]

HASZELDINE R S. Carbon capture and storage: how green can black be? [J]. Science, 2009, 325(5948): 1647-1652. DOI:  10.1126/science.1172246.
[17] 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.003.

LIN H Z, YANG H, LUO H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern energy construction, 2019, 6(1): 16-21. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.003.
[18]

WANG Q, LUO J Z, ZHONG Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends [J]. Energy & environmental science, 2011, 4(1): 42-55. DOI:  10.1039/C0EE00064G.
[19]

WAWRZYŃCZAK D, MAJCHRZAK-KUCĘBA I, SROKOSZ K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and purification technology, 2019, 209: 560-570. DOI:  10.1016/j.seppur.2018.07.079.
[20]

LIU B, YE L Q, WANG R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity [J]. ACS applied materials & interfaces, 2018, 10(4): 4001-4009. DOI:  10.1021/acsami.7b17503.
[21]

WANG L, YANG Y, SHEN W L, et al. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units [J]. Industrial & engineering chemistry research, 2013, 52(23): 7947-7955. DOI:  10.1021/ie4009716.
[22] 宗杰, 马庆兰, 陈光进, 等. 二氧化碳分离捕集研究进展 [J]. 现代化工, 2016, 36(11): 56-60. DOI:  10.16606/j.cnki.issn0253-4320.2016.11.013.

ZONG J, MA Q L, CHEN G J, et al. Progress of the separation and capture of CO2 [J]. Modern chemical industry, 2016, 36(11): 56-60. DOI:  10.16606/j.cnki.issn0253-4320.2016.11.013.
[23]

WON Y, KIM J Y, PARK Y C, et al. Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: the optimization of regeneration condition [J]. Energy, 2020, 208: 118188. DOI:  10.1016/j.energy.2020.118188.
[24]

HORNBOSTEL M. Pilot-scale evaluation of an advanced carbon sorbent-based process for post-combustion carbon capture [R]. Menlo Park: SRI International, 2016.
[25] 高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展 [J]. 辽宁化工, 2020, 49(11): 1389-1394. DOI:  10.3969/j.issn.1004-0935.2020.11.018.

GAO T F, CHANG C, YANG Y, et al. Research progress of pressure swing adsorption technology and adsorption materials for carbon capture [J]. Liaoning chemical industry, 2020, 49(11): 1389-1394. DOI:  10.3969/j.issn.1004-0935.2020.11.018.
[26] 张心悦. 层状复合金属氧化物中温吸附CO2的性能研究 [D]. 北京: 北京化工大学, 2018. DOI:  10.7666/d.Y3390266.

ZHANG X Y. Study on CO2 adsorption of mixed metal oxide under medium temperature [D]. Beijing: Beijing University of Chemical Technology, 2018. DOI:  10.7666/d.Y3390266.
[27] 陈琦, 张荣荣, 韩宝航. 基于氧化偶联聚合制备的共轭多孔聚咔唑及相关性能研究进展 [J]. 高分子通报, 2018(6): 1-8. DOI:  10.14028/j.cnki.1003-3726.2018.06.001.

CHEN Q, ZHANG R R, HAN B H. Conjugated porous polycarbazoles via oxidative coupling polymerization from preparation to properties [J]. Chinese polymer bulletin, 2018(6): 1-8. DOI:  10.14028/j.cnki.1003-3726.2018.06.001.
[28]

GAO W, LIANG S, WANG R, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges [J]. Chemical Society Reviews, 2020, 49(23): 8584-686. DOI:  10.1039/D0CS00025F.
[29]

RAO L L, MA R, LIU S F, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance [J]. Chemical engineering journal, 2019, 362: 794-801. DOI:  10.1016/j.cej.2019.01.093.
[30]

KONG Y X, JIN L, QIU J. Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites [J]. Science of the total environment, 2013, 463-464: 192-198. DOI:  10.1016/j.scitotenv.2013.05.050.
[31]

QIAN D, LEI C, HAO G P, et al. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability [J]. ACS applied materials & interfaces, 2012, 4(11): 6125-6132. DOI:  10.1021/am301772k.
[32]

CHAI S H, LIU Z M, HUANG K, et al. Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture [J]. Industrial & engineering chemistry research, 2016, 55(27): 7355-7361. DOI:  10.1021/acs.iecr.6b00823.
[33]

SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture [J]. Energy & environmental science, 2011, 4(5): 1765-1771. DOI:  10.1039/c0ee00784f.
[34]

LIU F Q, LI W, ZHAO J, et al. Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture [J]. Journal of materials chemistry A, 2015, 3(23): 12252-12258. DOI:  10.1039/c5ta01536g.
[35]

WANG H, WANG H, LIU G S, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N [J]. Science of the total environment, 2021, 771: 145424. DOI:  10.1016/J.SCITOTENV.2021.145424.
[36]

GAN F L, WANG B D, JIN Z H, et al. From typical silicon-rich biomass to porous carbon-zeolite composite: a sustainable approach for efficient adsorption of CO2 [J]. Science of the total environment, 2021, 768: 144529. DOI:  10.1016/j.scitotenv.2020.144529.
[37]

ZUKAL A, SHAMZHY M, KUBŮ M, et al. The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats [J]. Journal of CO2 utilization, 2018, 24: 157-163. DOI:  10.1016/j.jcou.2017.12.016.
[38]

CHEN S J, ZHU M, TANG Y C, et al. Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite [J]. Journal of materials chemistry A, 2018, 6(40): 19570-19583. DOI:  10.1039/C8TA05647A.
[39]

CALLEJA G, PAU J, CALLES J A. Pure and multicomponent adsorption equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with different Si/Al ratios [J]. Journal of chemical & engineering data, 1998, 43(6): 994-1003. DOI:  10.1021/je9702100.
[40]

WANG S, BAI P, SUN M Z, et al. Fabricating mechanically robust binder-free structured Zeolites by 3D printing coupled with Zeolite soldering: a superior configuration for CO2 capture [J]. Advanced science, 2019, 6(17): 1901317. DOI:  10.1002/advs.201901317.
[41]

YANG H D, FANG X Q, LI Z Y, et al. Copper-doped small pore Zeolites for CO2 capture by honeycomb rotor with low temperature regeneration [J]. ACS sustainable chemistry & engineering, 2022, 10(5): 1759-1764. DOI:  10.1021/acssuschemeng.1c08347.
[42]

LIANG W Q, HUANG J H, XIAO P, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese journal of chemical engineering, 2022, 43: 335-342. DOI:  10.1016/j.cjche.2022.02.004.
[43]

ALINEZHAD H, ABARGHOUEI M F, TAJBAKHSH M, et al. Application of MEA, TEPA and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian journal of chemistry and chemical engineering, 2021, 40(2): 581-592. DOI:  10.30492/IJCCE.2020.37861.
[44]

LIU Z, WANG L, KONG X M, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & engineering chemistry research, 2012, 51(21): 7355-7363. DOI:  10.1021/ie3005308.
[45]

WANG L, YANG Y, SHEN W L, et al. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant [J]. Chemical engineering science, 2013, 101: 615-619. DOI:  10.1016/j.ces.2013.07.028.
[46]

GE K, YU Q C, CHEN S H, et al. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes [J]. Chemical engineering journal, 2019, 364: 328-339. DOI:  10.1016/j.cej.2019.01.183.
[47]

AFONSO R, SARDO M, MAFRA L, et al. Unravelling the structure of chemisorbed CO2 species in mesoporous aminosilicas: a critical survey [J]. Environmental science & technology, 2019, 53(5): 2758-2767. DOI:  10.1021/acs.est.8b05978.
[48]

MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture [J]. Nature communications, 2018, 9(1): 726. DOI:  10.1038/s41467-018-03123-0.
[49]

KIM C, CHOI W, CHOI M. SO2-resistant amine-containing CO2 adsorbent with a surface protection layer [J]. ACS applied materials & interfaces, 2019, 11(18): 16586-16593. DOI:  10.1021/acsami.9b02831.
[50]

ANYANWU J T, WANG Y R, YANG R T. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica [J]. Chemical engineering journal, 2022, 427: 131561. DOI:  10.1016/J.CEJ.2021.131561.
[51]

LI K M, JIANG J G, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents [J]. Applied energy, 2014, 136: 750-755. DOI:  10.1016/j.apenergy.2014.09.057.
[52]

MENG Y, JIANG J G, GAO Y C, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents [J]. Journal of CO2 utilization, 2018, 27: 89-98. DOI:  10.1016/j.jcou.2018.07.007.
[53]

LOU F J, ZHANG A F, ZHANG G H, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure [J]. Applied energy, 2020, 264: 114637. DOI:  10.1016/j.apenergy.2020.114637.
[54]

CHEN C, XU H F, JIANG Q B, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents [J]. Energy, 2021, 214: 119093. DOI:  10.1016/j.energy.2020.119093.
[55]

LI K M, LU L, XU Y R, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation [J]. International journal of greenhouse gas control, 2021, 106: 103289. DOI:  10.1016/j.ijggc.2021.103289.
[56]

CHENG Y D, TAVARES S R, DOHERTY C M, et al. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture [J]. ACS applied materials & interfaces, 2018, 10(49): 43095-43103. DOI:  10.1021/acsami.8b16386.
[57]

ANDERSON R, RODGERS J, ARGUETA E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning [J]. Chemistry of materials, 2018, 30(18): 6325-6337. DOI:  10.1021/acs.chemmater.8b02257.
[58] 吴屹伟. 微纳结构镍和铬基金属—有机框架及其复合材料的电化学性能研究 [D]. 漳州: 闽南师范大学, 2020. DOI:  10.27726/d.cnki.gzzsf.2020.000216.

WU Y W. Study on the electrochemical properties of Cr and Ni-based mofs and their composites [D]. Zhangzhou: Minnan Normal University, 2020. DOI:  10.27726/d.cnki.gzzsf.2020.000216.
[59]

RAMOS-FERNANDEZ E V, GRAU-ATIENZA A, FARRUSSENG D, et al. A water-based room temperature synthesis of ZIF-93 for CO2 adsorption [J]. Journal of materials chemistry A, 2018, 6(14): 5598-5602. DOI:  10.1039/c7ta09807C.
[60]

LIU X L, PANG H W, LIU X W, et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions [J]. The innovation, 2021, 2(1): 100076. DOI:  10.1016/J.XINN.2021.100076.
[61]

ZHANG Y F, LIU H X, GAO F X, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment [J]. EnergyChem, 2022, 4(4): 100078. DOI:  10.1016/j.enchem.2022.100078.
[62]

DIVEKAR S, DASGUPTA S, ARYA A, et al. Improved CO2 recovery from flue gas by layered bed vacuum swing adsorption (VSA) [J]. Separation and purification technology, 2020, 234: 115594. DOI:  10.1016/j.seppur.2019.05.036.
[63]

EBNER A D, RITTER J A. Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture [J]. Aiche journal, 2004, 50(10): 2418-2429. DOI:  10.1002/aic.10191.
[64] 刘闯. 分离CO2的煤基活性炭制备研究 [D]. 徐州: 中国矿业大学, 2017.

LIU C. Research on preparation of coal-based activated carbon for separating CO2 [D]. Xuzhou: China University of Mining and Technology, 2017.
[65]

BAHRUN M H V, BONO A, OTHMAN N, et al. Carbon dioxide removal from biogas through pressure swing adsorption—a review [J]. Chemical engineering research and design, 2022, 183: 285-306. DOI:  10.1016/J.CHERD.2022.05.012.
[66] 刘应书, 郑新港, 刘文海, 等. 烟道气低浓度二氧化碳的变压吸附法富集研究 [J]. 现代化工, 2009, 29(7): 76-79. DOI:  10.16606/j.cnki.issn0253-4320.2009.07.017.

LIU Y S, ZHENG X G, LIU W H, et al. Low concentration carbon dioxide enrichment from flue gas by pressure swing adsorption [J]. Modern chemical industry, 2009, 29(7): 76-79. DOI:  10.16606/j.cnki.issn0253-4320.2009.07.017.
[67]

GHANBARI T, ABNISA F, WAN DAUD W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption [J]. Science of the total environment, 2020, 707: 135090. DOI:  10.1016/j.scitotenv.2019.135090.
[68]

SHAH G, AHMAD E, PANT K K, et al. Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption [J]. International journal of hydrogen energy, 2021, 46(9): 6588-6612. DOI:  10.1016/j.ijhydene.2020.11.116.
[69]

HARAOKA T, MOGI Y, SAIMA H. PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation [J]. Kagaku kogaku ronbunshu, 2013, 39(5): 439-444. DOI:  10.1252/kakoronbunshu.39.439.
[70]

QADER A, HOOPER B, INNOCENZI T, et al. Novel post-combustion capture technologies on a lignite fired power plant - results of the CO2CRC/H3 capture project [J]. Energy procedia, 2011, 4: 1668-1675. DOI:  10.1016/j.egypro.2011.02.039.
[71]

ISHIBASHI M, OTA H, AKUTSU N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy conversion and management, 1996, 37(6/8): 929-933. DOI:  10.1016/0196-8904(95)00279-0.
[72]

CHO S H, PARK J H, BEUM H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in surface science and catalysis, 2004, 153: 405-410. DOI:  10.1016/S0167-2991(04)80287-8.