[1] 张灿, 张明震, 申升, 等. 中国氢能高质量发展的路径建议与政策探讨 [J]. 南方能源建设, 2022, 9(4): 11-23. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.002.

ZHANG C, ZHANG M Z, SHEN S, et al. Path suggestion and policy discussion for China's high-quality development of hydrogen energy [J]. Southern energy construction, 2022, 9(4): 11-23. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.002.
[2] 姚若军, 高啸天. 氢能产业链及氢能发电利用技术现状及展望 [J]. 南方能源建设, 2021, 8(4): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.002.

YAO R J, GAO X T. Current situation and prospect of hydrogen energy industry chain and hydrogen power generation utilization technology [J]. Southern energy construction, 2021, 8(4): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.002.
[3] 张万凌, 康祥, 李云, 等. 70 MPa加氢站大流量氢压机设计方案 [J]. 化工机械, 2022, 49(4): 664-669, 682. DOI:  10.20031/j.cnki.0254-6094.202204019.

ZHANG W L, KANG X, LI Y, et al. Design scheme for large-flow hydrogen compressor in 70 MPa hydrogen fueling station [J]. Chemical engineering & machinery, 2022, 49(4): 664-669, 682. DOI:  10.20031/j.cnki.0254-6094.202204019.
[4] 何广利, 许壮, 董辉, 等. 35 MPa/70 MPa加氢站运行优化技术分析 [J]. 当代化工, 2020, 49(11): 2625-2628. DOI:  10.13840/j.cnki.cn21-1457/tq.2020.11.061.

HE G L, XU Z, DONG H, et al. Analysis on 35 MPa/70 MPa hydrogen refueling station process optimization technologies [J]. Contemporary chemical industry, 2020, 49(11): 2625-2628. DOI:  10.13840/j.cnki.cn21-1457/tq.2020.11.061.
[5] 王晓静, 刘瑞. 70 MPa加氢站高压氢气冷却器结构分析及优化 [J]. 化工机械, 2022, 49(2): 302-308. DOI:  10.20031/j.cnki.0254-6094.202202021.

WANG X J, LIU R. Structure analysis and optimization of high pressure hydrogen cooler in 70 MPa hydrogen refueling station [J]. Chemical engineering & machinery, 2022, 49(2): 302-308. DOI:  10.20031/j.cnki.0254-6094.202202021.
[6]

REDDI K, ELGOWAINY A, RUSTAGI N, et al. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen [J]. International journal of hydrogen energy, 2017, 42(34): 21855-21865. DOI:  10.1016/j.ijhydene.2017.05.122.
[7] 顾玲俐, 吴一梅, 尹立坤, 等. 加氢站流程和配置技术现状与展望 [J]. 新能源进展, 2021, 9(5): 418-425. DOI:  10.3969/j.issn.2095-560X.2021.05.008.

GU L L, WU Y M, YIN L K, et al. Status and prospect of process and configuration technology for hydrogen refueling station [J]. Advances in new and renewable energy, 2021, 9(5): 418-425. DOI:  10.3969/j.issn.2095-560X.2021.05.008.
[8]

ROTHUIZEN E, ROKNI M. Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles [J]. International journal of hydrogen energy, 2014, 39(1): 582-592. DOI:  10.1016/j.ijhydene.2013.10.066.
[9] 陈志丽, 赵竟池, 曲艳慧. 加氢站的工艺设计研究 [J]. 能源与节能, 2022(5): 12-14+23. DOI:  10.3969/j.issn.2095-0802.2022.05.003.

CHEN Z L, ZHAO J CH, QU Y H. Process design of hydrogen refueling station [J]. Energy and energy conservation, 2022(5): 12-14+23. DOI:  10.3969/j.issn.2095-0802.2022.05.003.
[10]

XIAO L, CHEN J Y, WU Y M, et al. Effects of pressure levels in three-cascade storage system on the overall energy consumption in the hydrogen refueling station [J]. International journal of hydrogen energy, 2021, 46(61): 31334-31345. DOI:  10.1016/j.ijhydene.2021.07.007.
[11]

GUO J X, XING L J, HUA Z L, et al. Optimization of compressed hydrogen gas cycling test system based on multi-stage storage and self-pressurized method [J]. International journal of hydrogen energy, 2016, 41(36): 16306-16315. DOI:  10.1016/j.ijhydene.2016.05.076.
[12] 刘京京, 何宏凯. 加氢站加氢能力匹配设计及其能耗分析 [J]. 上海煤气, 2022(3): 1-5, 25. DOI:  10.3969/j.issn.1009-4709.2022.03.001.

LIU J J, HE H K. The capacity matching design and energy consumption analysis of hydrogen refueling station [J]. Shanghai gas, 2022(3): 1-5, 25. DOI:  10.3969/j.issn.1009-4709.2022.03.001.
[13] 沈海仁, 安刚, 郑传祥, 等. 复合材料高压储氢气瓶快速充放氢过程中的温度效应研究 [J]. 化工装备技术, 2012, 33(4): 18-21. DOI:  10.3969/j.issn.1007-7251.2012.04.006.

SHEN H R, AN G, ZHENG C X, et al. Temperature effects of composite high pressure hydrogen storage cylinders in the rapid hydrogen charging and discharging process [J]. Chemical equipment technology, 2012, 33(4): 18-21. DOI:  10.3969/j.issn.1007-7251.2012.04.006.
[14] 陈珺珺, 朱旺, 高沛, 等. 国内外加氢站预冷装置技术特点比较分析 [J]. 能源研究与管理, 2021(1): 25-29. DOI:  10.16056/j.2096-7705.2021.01.006.

CHEN J J, ZHU W, GAO P, et al. Research status and prospects of pre-cooling equipment in hydrogen refueling station [J]. Energy research and management, 2021(1): 25-29. DOI:  10.16056/j.2096-7705.2021.01.006.
[15]

SAE. Fueling protocols for light duty gaseous hydrogen surface vehicles: J2601_202005[S]. New York: SAE International, 2020.
[16]

BAUER A, MAYER T, SEMMEL M, et al. Energetic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen [J]. International journal of hydrogen energy, 2019, 44(13): 6795-6812. DOI:  10.1016/j.ijhydene.2019.01.087.
[17]

LEACHMAN J W, JACOBSEN R T, PENONCELLO S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen [J]. Journal of physical and chemical reference data, 2009, 38(3): 721-748. DOI:  10.1063/1.3160306.
[18]

PEHNT M. Energieeffizienz [M]. Berlin: Springer, 2010.
[19]

GROUSET D, RIDART C. Chapter 6-Lowering energy spending together with compression, storage, and transportation costs for hydrogen distribution in the early market [M]//AZZARO-PANTEL C. Hydrogen supply chains. Amsterdam: Elsevier, 2018: 207-270.
[20]

ELGOWAINY A, REDDI K, LEE D Y, et al. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations [J]. International journal of hydrogen energy, 2017, 42(49): 29067-29079. DOI:  10.1016/j.ijhydene.2017.09.087.