[1] 程浩忠. 电力系统规划 [M]. 北京: 中国电力出版社, 2008.

CHENG H Z. Power system planning [M]. Beijing: China Electric Power Press, 2008.
[2] 陈本阳. 大数据技术在短期负荷预测的应用 [J]. 自动化技术与应用, 2018, 37(6): 21-25. DOI:  10.3969/j.issn.1003-7241.2018.06.005.

CHEN B Y. Application of big data technology in short term load forecasting [J]. Techniques of automation and applications, 2018, 37(6): 21-25. DOI:  10.3969/j.issn.1003-7241.2018.06.005.
[3] 李凯, 赵滨滨, 曹占峰, 等. 基于回归分析和虚拟变量的短期用电量预测管理模型 [J]. 电气应用, 2017, 36(2): 59-65.

LI K, ZHAO B B, CAO Z F, et al. Short-term electricity consumption prediction management model based on regression analysis and dummy variables [J]. Electrotechnical application, 2017, 36(2): 59-65.
[4] 万昆, 柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用 [J]. 电网技术, 2012, 36(11): 77-81. DOI:  10.13335/j.1000-3673.pst.2012.11.044.

WAN K, LIU R Y. Application of interval time-series vector autoregressive model in short-term load forecasting [J]. Power system technology, 2012, 36(11): 77-81. DOI:  10.13335/j.1000-3673.pst.2012.11.044.
[5] 徐衍会, 王晨语. 基于灰色关联度的陕西电网负荷特性影响因素分析 [J]. 电气应用, 2017, 36(14): 16-20.

XU Y H, WANG C Y. Analysis of the influencing factors of load characteristics of Shaanxi power grid based on gray correlation degree [J]. Electrotechnical application, 2017, 36(14): 16-20.
[6] 耿艳, 韩学山, 韩力. 基于最小二乘支持向量机的短期负荷预测 [J]. 电网技术, 2008, 32(18): 72-76. DOI:  10.13335/j.1000-3673.pst.2008.18.011.

GENG Y, HAN X S, HAN L. Short-term load forecasting based on least squares support vector machines [J]. Power system technology, 2008, 32(18): 72-76. DOI:  10.13335/j.1000-3673.pst.2008.18.011.
[7] 陈超, 黄国勇, 邵宗凯, 等. 基于日特征量相似日的PSO-SVM短期负荷预测 [J]. 中国电力, 2013, 46(7): 91-94. DOI:  10.3969/j.issn.1004-9649.2013.07.019.

CHEN C, HUANG G Y, SHAO Z K, et al. Short-term load forecasting for similar days based on PSO-SVM and daily feature vector [J]. Electric power, 2013, 46(7): 91-94. DOI:  10.3969/j.issn.1004-9649.2013.07.019.
[8] 申洪涛, 李飞, 史轮, 等. 基于气象数据降维与混合深度学习的短期电力负荷预测 [J]. 电力建设, 2024, 45(1): 13-21. DOI:  10.12204/j.issn.1000-7229.2024.01.002.

SHEN H T, LI F, SHI L, et al. Short-term power load forecasting based on reduction of meteorological data dimensionality and hybrid deep learning [J]. Electric power construction, 2024, 45(1): 13-21. DOI:  10.12204/j.issn.1000-7229.2024.01.002.
[9] 封钰, 宋佑斌, 金晟, 等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型 [J]. 发电技术, 2023, 44(6): 889-895. DOI:  10.12096/j.2096-4528.pgt.23013.

FENG Y, SONG Y B, JIN S, et al. Improved deep learning model for forecasting short-term load based on random forest algorithm and rough set theory [J]. Power generation technology, 2023, 44(6): 889-895. DOI:  10.12096/j.2096-4528.pgt.23013.
[10] 吴润泽, 包正睿, 宋雪莹, 等. 基于深度学习的电网短期负荷预测方法研究 [J]. 现代电力, 2018, 35(2): 43-48. DOI:  10.3969/j.issn.1007-2322.2018.02.007.

WU R Z, BAO Z R, SONG X Y, et al. Research on short-term load forecasting method of power grid based on deep learning [J]. Modern electric power, 2018, 35(2): 43-48. DOI:  10.3969/j.issn.1007-2322.2018.02.007.
[11] 朱祥和, 王子琦, 李严, 等. 基于EEMD的LS-SVM和BP神经网络混合短期负荷预测 [J]. 数学的实践与认识, 2012, 42(8): 151-158. DOI:  10.3969/j.issn.1000-0984.2012.08.023.

ZHU X H, WANG Z Q, LI Y, et al. A hybrid short-term load forecasting method combined with LS-SVM and BP neural network based on EEMD [J]. Mathematics in practice and theory, 2012, 42(8): 151-158. DOI:  10.3969/j.issn.1000-0984.2012.08.023.
[12]

HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the royal society A:mathematical, physical and engineering sciences, 1998, 454(1971): 903-995. DOI:  10.1098/rspa.1998.0193.
[13]

WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. DOI:  10.1142/S1793536909000047.
[14] 钱诚, 严中伟, 符淙斌. 1960~2008年中国二十四节气气候变化 [J]. 科学通报, 2012, 57(2): 276-286. DOI:  10.1007/s11434-011-4724-4.

QIAN C, YAN Z W, FU C B. Climatic changes in the twenty-four solar terms during 1960~2008 [J]. Chinese science bulletin, 2012, 57(2): 276-286. DOI:  10.1007/s11434-011-4724-4.
[15] 裴琳, 严中伟, 杨辉. 400多年来中国东部旱涝型变化与太平洋年代际振荡关系 [J]. 科学通报, 2015, 60(1): 97-108. DOI:  10.1360/N972014-00790.

PEI L, YAN Z W, YANG H. Multidecadal variability of dry/wet patterns in eastern China and their relationship with the pacific decadal oscillation in the last 400 years [J]. Chinese science bulletin, 2015, 60(1): 97-108. DOI:  10.1360/N972014-00790.
[16] 杨秋明, 钱玮, 李熠, 等. 登陆中国热带风暴年际和年代际变化及其与全球大尺度环流的相关 [J]. 气候变化研究进展, 2011, 7(4): 243-247. DOI:  10.3969/j.issn.1673-1719.2011.04.002.

YANG Q M, QIAN W, LI Y, et al. Principal time modes of the interannual and decadal variations of landfall tropical storm number in China and their relationships to the global large scale circulation [J]. Climate change research, 2011, 7(4): 243-247. DOI:  10.3969/j.issn.1673-1719.2011.04.002.
[17]

QIAN C, WU Z H, FU C B, et al. On multi-timescale variability of temperature in China in modulated annual cycle reference frame [J]. Advances in atmospheric sciences, 2010, 27(5): 1169-1182. DOI:  10.1007/s00376-009-9121-4.
[18]

QIAN C, YAN Z W, WU Z H, et al. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China [J]. Advances in atmospheric sciences, 2011, 28(2): 297-309. DOI:  10.1007/s00376-010-9242-9.
[19] 梁萍, 丁一汇. 东亚梅雨季节内振荡的气候特征 [J]. 气象学报, 2012, 70(3): 418-435.

LIANG P, DING Y H. Climatologic characteristics of the intraseasonal oscillation of East Asian Meiyu [J]. Acta meteorologica sinica, 2012, 70(3): 418-435.
[20] 魏萌, 乔方利. CMIP5气候模式模拟的1850~2014年全球温度变化的集合经验模态分解 [J]. 中国科学(地球科学), 2017, 60(2): 397-408. DOI:  10.1360/N072015-00465.

WEI M, QIAO F L. Attribution analysis for the failure of CMIP5 climate models to simulate the recent global warming hiatus from 1850 to 2014 [J]. Science China (earth sciences), 2017, 60(2): 397-408. DOI:  10.1360/N072015-00465.
[21] 姬广龙, 袁越, 黄俊辉, 等. 基于EEMD-HS-SVM的短期风功率组合预测模型 [J]. 可再生能源, 2017, 35(8): 1221-1228. DOI:  10.14941/j.cnki.21-1469/tk.2017.08.018.

JI G L, YUAN Y, HUANG J H, et al. Combined model based on EEMD-HS-SVM for short-term wind power prediction [J]. Renewable energy resources, 2017, 35(8): 1221-1228. DOI:  10.14941/j.cnki.21-1469/tk.2017.08.018.
[22] 杨茂, 陈郁林, 魏治成. 基于EEMD去噪和集对理论的风功率实时预测研究 [J]. 太阳能学报, 2018, 39(5): 1440-1448. DOI:  10.19912/j.0254-0096.2018.05.038.

YANG M, CHEN Y L, WEI Z C. Real-time prediction for wind power based on EEMD denoising and theory of SPA [J]. Acta energiae solaris sinica, 2018, 39(5): 1440-1448. DOI:  10.19912/j.0254-0096.2018.05.038.
[23] 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测 [J]. 中国电机工程学报, 2013, 33(34): 17-24. DOI:  10.13334/j.0258-8013.pcsee.2013.34.007.

MAO M Q, GONG W J, ZHANG L C, et al. Short-term photovoltaic generation forecasting based on EEMD-SVM combined method [J]. Proceedings of the CSEE, 2013, 33(34): 17-24. DOI:  10.13334/j.0258-8013.pcsee.2013.34.007.
[24] 朱梅梅, 苏建徽, 陈智慧. 基于EEMD和IPSO的SVM短期光伏出力预测 [J]. 电气工程学报, 2016, 11(4): 47-54. DOI:  11.11985/2016.04.008.

ZHU M M, SU J H, CHEN Z H. A forecasting model of support vector machine based on ensemble empirical mode decomposition and improved particle swarm optimization [J]. Journal of electrical engineering, 2016, 11(4): 47-54. DOI:  11.11985/2016.04.008.
[25] 马超, 姜璇. 基于EEMD-ANN的水库年径流预测 [J]. 水电能源科学, 2016, 34(8): 32-35.

MA C, JIANG X. Annual reservoir runoff forecasting using ensemble empirical mode decomposition and artificial neuron network [J]. Water resources and power, 2016, 34(8): 32-35.
[26] 李媛媛, 牛东晓, 乞建勋, 等. 基于因散经验模式分解的电力负荷混合预测方法 [J]. 电网技术, 2008, 32(8): 58-62. DOI:  10.13335/j.1000-3673.pst.2008.08.014.

LI Y Y, NIU D X, QI J X, et al. A novel hybrid power load forecasting method based on ensemble empirical mode decomposition [J]. Power system technology, 2008, 32(8): 58-62. DOI:  10.13335/j.1000-3673.pst.2008.08.014.
[27] 郭建鹏, 佘颖铃, 温步瀛. 基于EEMD-ARIMA模型的地区月负荷量预测 [J]. 电力工程技术, 2018, 37(6): 28-32,74. DOI:  10.3969/j.issn.1009-0665.2018.06.004.

GUO J P, SHE Y L, WEN B L. Regional monthly load forecast based on EEMD-ARIMA model [J]. Electric power engineering technology, 2018, 37(6): 28-32,74. DOI:  10.3969/j.issn.1009-0665.2018.06.004.
[28] 陈艳平, 毛弋, 陈萍, 等. 基于EEMD-样本熵和Elman神经网络的短期电力负荷预测 [J]. 电力系统及其自动化学报, 2016, 28(3): 59-64. DOI:  10.3969/j.issn.1003-8930.2016.03.011.

CHEN Y P, MAO Y, CHEN P, et al. Short-term power load forecasting based on ensemble empirical mode decomposition-sample entropy and Elman neural network [J]. Proceedings of the CSU-EPSA, 2016, 28(3): 59-64. DOI:  10.3969/j.issn.1003-8930.2016.03.011.
[29] 侯鲁亭, 高军伟. 基于EEMD和PSO-LSSVM模型的短期电力负荷预测 [J]. 制造业自动化, 2018, 40(4): 77-81. DOI:  10.3969/j.issn.1009-0134.2018.04.019.

HOU L T, GAO J W. Short-term load forecasting based on EEMD and PSO-LSSVM mode [J]. Manufacturing automation, 2018, 40(4): 77-81. DOI:  10.3969/j.issn.1009-0134.2018.04.019.
[30] 李香龙, 张宝群, 张宇, 等. 基于EEMD-BP神经网络的含电采暖的配电变压器短期负荷预测 [J]. 电测与仪表, 2018, 55(10): 101-107. DOI:  10.3969/j.issn.1001-1390.2018.10.017.

LI X L, ZHANG B Q, ZHANG Y, et al. Short-term load forecasting of distribution transformer with electric heating based on EEMD-BP neutral network [J]. Electrical measurement & instrumentation, 2018, 55(10): 101-107. DOI:  10.3969/j.issn.1001-1390.2018.10.017.
[31] 张凌云, 肖惠仁, 吴俊豪, 等. 电力系统负荷预测综述 [J]. 电力大数据, 2018, 21(1): 52-56. DOI:  10.19317/j.cnki.1008-083x.2018.01.012.

ZHANG L Y, XIAO H R, WU J H, et al. Review of power system load forecasting [J]. Power systems and big data, 2018, 21(1): 52-56. DOI:  10.19317/j.cnki.1008-083x.2018.01.012.
[32] 刘静, 成丹, 代娟, 等. 武汉地区电力负荷特征及其对气温变化的响应 [J]. 气象科技进展, 2021, 11(4): 186-188. DOI:  10.3969/j.issn.2095-1973.2021.04.028.

LIU J, CHENG D, DAI J, et al. Characteristics of power load in Wuhan and its response to temperature changes [J]. Advances in meteorological science and technology, 2021, 11(4): 186-188. DOI:  10.3969/j.issn.2095-1973.2021.04.028.
[33] 王丽娟, 任永建, 陈正洪, 等. 基于气温累积效应和炎热指数的夏季日最大电力负荷预测研究 [J]. 气象与环境科学, 2021, 44(2): 106-111. DOI:  10.16765/j.cnki.1673-7148.2021.02.013.

WANG L J, REN Y J, CHEN Z H, et al. Study on maximum power load prediction in summer based on temperature cumulative effect and heat index [J]. Meteorological and environmental sciences, 2021, 44(2): 106-111. DOI:  10.16765/j.cnki.1673-7148.2021.02.013.
[34] 贺莉微, 任永建, 夏青. 不同舒适度指数在最大电力负荷预测中的应用 [J]. 干旱气象, 2021, 39(6): 1031-1038. DOI:  10.11755/j.issn.1006-7639(2021)-06-1031.

HE L W, REN Y J, XIA Q. Application of different comfort indexes in maximum electric power load forecasting [J]. Journal of arid meteorology, 2021, 39(6): 1031-1038. DOI:  10.11755/j.issn.1006-7639(2021)-06-1031.
[35] 任永建, 熊守权, 洪国平, 等. 气象因子对夏季最大电力负荷的敏感性分析 [J]. 气象, 2020, 46(9): 1245-1253. DOI:  10.7519/j.issn.1000-0526.2020.09.011.

REN Y J, XIONG S Q, HONG G P, et al. Sensitivity analysis of meteorological factors to summer maximum power load [J]. Meteorological monthly, 2020, 46(9): 1245-1253. DOI:  10.7519/j.issn.1000-0526.2020.09.011.
[36] 程定芳, 任永建, 陈正洪. 精细化气象因子对短期电力负荷预测的影响研究 [J]. 华中师范大学学报(自然科学版), 2020, 54(5): 792-797. DOI:  10.19603/j.cnki.1000-1190.2020.05.008.

CHENG D F, REN Y J, CHEN Z H. Influence of refined meteorological factors on short-term electric load forecasting [J]. Journal of Central China Normal University (natural sciences edition), 2020, 54(5): 792-797. DOI:  10.19603/j.cnki.1000-1190.2020.05.008.
[37] 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述 [J]. 电力系统保护与控制, 2011, 39(1): 147-152. DOI:  10.3969/j.issn.1674-3415.2011.01.028.

LIAO N H, HU Z H, MA Y Y, et al. Review of the short-term load forecasting methods of electric power system [J]. Power system protection and control, 2011, 39(1): 147-152. DOI:  10.3969/j.issn.1674-3415.2011.01.028.