[1] |
王春林, 周昊, 李国能, 等. 基于遗传算法和支持向量机的低NOx燃烧优化 [J]. 中国电机工程学报, 2007, 27(11): 40-44. DOI: 10.3321/j.issn:0258-8013.2007.11.008.
WANG C L, ZHOU H, LI G N, et al. Support vector machine and genetic algorithms to optimize combustion for low NOx emission [J]. Proceedings of the CSEE, 2007, 27(11): 40-44. DOI: 10.3321/j.issn:0258-8013.2007.11.008. |
[2] |
王禹朋, 阎维平, 祝云飞, 等. 支持向量机理论与遗传算法相结合的300MW机组锅炉多目标燃烧优化 [J]. 热力发电, 2015, 44(10): 91-96. DOI: 10.3969/j.issn.1002-3364.2015.10.091.
WANG Y P, YAN W P, ZHU Y F. Multi-objective combustion optimization for a 300MW unit using support vector machine theory combining with genetic algorithm [J]. Thermal Power Generation, 2015, 44(10): 91-96. DOI: 10.3969/j.issn.1002-3364.2015.10.091. |
[3] |
JACOB T, RICKY V, SIVA A, et al. Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization [J]. Control Engineering Practice, 2019(93): 104167. DOI: 10.1016/j.conengprac.2019.104167. |
[4] |
李霞, 牛培峰, 马云鹏, 等. 基于改良的鸡群优化算法优化锅炉NOx排放质量浓度 [J]. 动力工程学报, 2017, 37(4): 293-300. DOI: 10.3969/j.issn.1674-7607.2017.04.007.
LI X, NIU P F, MA Y P, et al. NOx emission reduction of a boiler based on ameliorated chicken swarm optimization [J]. Journal of Chinese Society of Power Engineering, 2017, 37(4): 293-300. DOI: 10.3969/j.issn.1674-7607.2017.04.007. |
[5] |
牛培峰, 李进柏, 刘楠, 等. 基于改进花授粉算法和极限学习机的锅炉NOx排放优化 [J]. 动力工程学报, 2018, 38(10): 782-787. DOI: 10.3969/j.issn.1674-7607.2018.10.002.
NIU P F, LI J B, LIU N, et al. NOx emission optimization of a boiler based on improved flower pollination algorithm and extreme learning machine [J]. Journal of Chinese Society of Power Engineering, 2018, 38(10): 782-787. DOI: 10.3969/j.issn.1674-7607.2018.10.002. |
[6] |
牛培峰, 肖兴军, 李国强, 等. 基于万有引力搜索算法的电厂锅炉NOx排放模型的参数优化 [J]. 动力工程学报, 2013, 33(2): 100-106. DOI: 10.3969/j.issn.1674-7607.2013.02.004.
NIU P F, XIAO X J, LI G Q, et al. Parameter optimization for NOx emission model of power plant boilers based on gravitational search algorithm [J]. Journal of Chinese Society of Power Engineering, 2013, 33(2): 100-106. DOI: 10.3969/j.issn.1674-7607.2013.02.004. |
[7] |
胡永宏. 对TOPSIS法用于综合评价的改进 [J]. 数学的实践与认识, 2002, 32(4): 572-575. DOI: 10.3969/j.issn.1000-0984.2002.04.009.
HU Y H. The improved method for TOPSIS in comprehensive evaluation [J]. Mathematics in Practice and Theory, 2002, 32(4): 572-575. DOI: 10.3969/j.issn.1000-0984.2002.04.009. |
[8] |
王丙乾, 董剑敏, 关前锋, 等. 基于灰色关联TOPSIS法的抽水蓄能电站风险评价体系研究 [J]. 南方能源建设, 2020, 7(增刊2): 56-61. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.009.
WANG B Q, DONG J M, GUAN Q F, HAN Q. Research on risk assessment system of pumped storage power station using grey relational TOPSIS method [J]. Southern Energy Construction, 2020, 7(Supp. 2): 56-61. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.009. |
[9] |
刘长良, 刘梦琼. 基于改进TOPSIS法的火电机组运行可靠性评价 [J]. 热力发电, 2015, 44(5): 1-6+11. DOI: 10.3969/j.issn.1002-3364.2015.05.001.
LIU C L, LIU M Q. Improved TOPSIS based reliability evaluation for thermal power units [J]. Thermal Power Generation, 2015, 44(5): 1-6+11. DOI: 10.3969/j.issn.1002-3364.2015.05.001. |
[10] |
郭建豪, 刘鑫屏. 基于改进TOPSIS法的过热汽温控制系统综合性能评价 [J]. 华北电力大学学报(自然科学版), 2021, 48(6): 81-89. DOI: 10.3969/j.ISSN.1007-2691.2021.06.11.
GUO J H, LIU X P. Comprehensive performance evaluation of thermal power unit control system based on Improved TOPSIS method [J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(6): 81-89. DOI: 10.3969/j.ISSN.1007-2691.2021.06.11. |
[11] |
吴延群, 刘长良. 基于改进型TOPSIS法的水电机组运行可靠性分析 [J]. 电力科学与工程, 2018, 34(1): 59-65. DOI: 10.3969/j.ISSN.1672-0792.2018.01.011.
WU Y Q, LIU C L. Operational reliability analysis of hydropower unit based on improved TOPSIS method [J]. Electric Power Science and Engineering, 2018, 34(1): 59-65. DOI: 10.3969/j.ISSN.1672-0792.2018.01.011. |
[12] |
王先甲, 汪磊. 基于马氏距离的改进型TOPSIS在供应商选择中的应用 [J]. 控制与决策, 2012, 27(10): 1566-1570. DOI: 10.13195/j.cd.2012.10.129.wangxj.004.
WANG X J, WANG L. Applications of TOPSIS improved based on Mahalanobis distance in supplier selection [J]. Control and Decision, 2012, 27(10): 1566-1570. DOI: 10.13195/j.cd.2012.10.129.wangxj.004. |
[13] |
董胡适, 蒋国璋, 段现银. 量子遗传算法和神经网络的锅炉燃烧优化控制 [J]. 机械设计与制造, 2020(11): 14-17. DOI: 10.3969/j.issn.1001-3997.2020.11.004.
DONG H S, JIANG G Z, DUAN X Y. Boiler combustion optimization control based on quantum genetic algorithm and neural network [J]. Machinery Design & Manufacture, 2020(11): 14-17. DOI: 10.3969/j.issn.1001-3997.2020.11.004. |
[14] |
孔峰. 多属性决策模型的选择反转问题研究 [M]. 北京: 中国农业科学技术出版社, 2011.
KONG F. Research on selection reversal of multi-attribute decision making model [M]. Beijing: China Agricultural Science and Technology Press, 2011. |
[15] |
谢进, 刘阶萍, 朱晓敏. 基于模糊逻辑的制造业供应链网络优化研究 [J]. 物流技术, 2012, 31(4): 122126+154-126+154. DOI: 10.3969/j.issn.1005-152X.2012.04.038.
XIE J, LIU J P, ZHU X M. Study on manufacturers network optimization based on fuzzy logic [J]. Logistics Technology, 2012, 31(4): 122126+154-126+154. DOI: 10.3969/j.issn.1005-152X.2012.04.038. |
[16] |
TASKIN J, TANIA U, G. M. S. Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis [J]. Energy, 2020(201): 117580. DOI: 10.1016/j.energy.2020.117580. |
[17] |
蹇明, 黄定轩, 武振业. 无决策属性的多属性决策权重融合方法 [J]. 西南交通大学学报, 2005, 40(2): 264-268. DOI: 10.3969/j.issn.0258-2724.2005.02.028.
JIAN M, HUANG D X, WU Z Y. Weight syncretizing for multiattribute decision-making without decision attribute [J]. Journal of Southwest Jiaotong University, 2005, 40(2): 264-268. DOI: 10.3969/j.issn.0258-2724.2005.02.028. |
[18] |
张振星, 孙保民, 信晶. 基于自适应遗传算法的锅炉低NOx燃烧建模及其优化 [J]. 热力发电, 2014, 43(9): 60-64+70. DOI: 10.3969/j.issn.1002-3364.2014.09.060.
ZHANG Z X, SUN B M, XIN J. Adaptive genetic algorithm based low NOx combustion modeling and optimization for boilers [J]. Thermal Power Generation, 2014, 43(9): 60-64+70. DOI: 10.3969/j.issn.1002-3364.2014.09.060. |
[19] |
李克钢, 侯克鹏, 李旺. 指标动态权重对边坡稳定性的影响研究 [J]. 岩土力学, 2009, 30(2): 492-496. DOI: 10.3969/j.issn.1000-7598.2009.02.036.
LI K G, HOU K P, LI W. Research on influences of factors dynamic weight on slope stability [J]. Rock and Soil Mechanics, 2009, 30(2): 492-496. DOI: 10.3969/j.issn.1000-7598.2009.02.036. |