[1] BECKEN S, MACKEY B, LEE D S. Implications of preferential access to land and clean energy for sustainable aviation fuels [J]. Science of the total environment, 2023, 886: 163883. DOI:  10.1016/j.scitotenv.2023.163883.
[2] ZHANG Y, WANG X R, ZHANG J W, et al. Investigation of cellular characteristics of hydrogen-ethanol flame at elevated temperatures and pressures [J]. Fuel, 2023, 341: 127643. DOI:  10.1016/j.fuel.2023.127643.
[3] LIANG C, LI X L, XU C S, et al. Hydrogen addition effect on cellularization and intrinsic instability of ethyl acetate spherical expanding flame [J]. International journal of hydrogen energy, 2024, 49: 222-239. DOI:  10.1016/j.ijhydene.2023.07.157.
[4] OKONKWO P C. A case study on hydrogen refueling station techno-economic viability [J]. International journal of hydrogen energy, 2024, 49: 736-746. DOI:  10.1016/j.ijhydene.2023.11.086.
[5] 刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.

LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.
[6] 危昊翔,王筱蓉,姜根柱,等.掺醇生物柴油混合燃料蒸发特性 [J/OL].南方能源建设,1-8(2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html.

WEI H X, WANG X R, JIANG G Z, et al. Evaporation Characteristics of Ethanol Blended Biodiesel Fuel for Generators [J/OL]. Southern energy construction, 1-8 (2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html.
[7] 苏傲成, 姜根柱, 王筱蓉, 等. 乙醇-氢气-空气混合燃气的层流燃烧速度测定 [J]. 车用发动机, 2024(1): 42-48.

SU A C, JIANG G Z, WANG X R, et al. Measurement of laminar combustion velocity of ethanol-hydrogen-air mixed gas [J]. Vehicle engine, 2024(1): 42-48.
[8]

MA Y, WANG X R, LI T, et al. Hydrogen and ethanol: production, storage, and transportation [J]. International journal of hydrogen energy, 2021, 46(54): 27330-27348. DOI:  10.1016/j.ijhydene.2021.06.027.
[9]

YAN S, FENG J, XIA Z H, et al. Effect of corn stalks on coal catalytic hydrogasification in a pressurized fluidized bed for manufacturing CH4 [J]. Fuel, 2024, 358: 130118. DOI:  10.1016/j.fuel.2023.130118.
[10] 朱源, 姜根柱, 王筱蓉, 等. 高温下掺氢燃气层流燃烧速度和稳定性研究 [J]. 车用发动机, 2023(6): 26-32.

ZHU Y, JIANG G Z, WANG X R, et al. Laminar combustion speed and stability of hydrogen-doped-gas at high temperature [J]. Vehicle engine, 2023(6): 26-32.
[11] 张嘉玮. 掺氢预混燃气燃烧爆炸特性及密闭空间泄爆仿真研究 [D]. 镇江: 江苏科技大学, 2023. DOI:  10.27171/d.cnki.ghdcc.2023.000099.

ZHANG J W. Simulation study on combustion and explosion characteristics of hydrogen-doped premixed gas and confined space explosion release [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. DOI:  10.27171/d.cnki.ghdcc.2023.000099.
[12]

YADAV N K, SAXENA M R, MAURYA R K. Inhalation toxicity characterization of nanoparticle and carbonyl emission from conventional diesel and methanol/gasoline-diesel RCCI engine [J]. Fuel, 2024, 366: 131353. DOI:  10.1016/j.fuel.2024.131353.
[13]

WANG Z H, HAN X L, HE Y, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames [J]. Combustion and flame, 2021, 229: 111392. DOI:  10.1016/j.combustflame.2021.02.038.
[14] 张嘉瑞. 燃气轮机燃烧室中NH3/H2燃烧和排放特性研究 [D]. 济南: 齐鲁工业大学, 2024. DOI:  10.27278/d.cnki.gsdqc.2024.000339.

ZHANG J R. Numerical on NH3/H2 combustion and emission characteristics in gas turbine combustion chamber [D]. Jinan: Qilu University of Technology, 2024. DOI:  10.27278/d.cnki.gsdqc.2024.000339.
[15] 金宝志. NH3/H2/空气火焰层流燃烧特性的实验及仿真研究 [D]. 北京: 北京交通大学, 2022. DOI:  10.26944/d.cnki.gbfju.2022.001844.

JIN B Z. Experimental and numerical study of the laminar burning characteristics of NH3/H2/air flames [D]. Beijing: Beijing Jiaotong University, 2022. DOI:  10.26944/d.cnki.gbfju.2022.001844.
[16] 陈家兴. 乙醇—氢气—空气混合物层流燃烧特性的研究 [D]. 镇江: 江苏科技大学, 2021. DOI:  10.27171/d.cnki.ghdcc.2021.000339.

CHEN J X. Effect of hydrogen addition on laminar combustion characteristics of ethanol-air mixture [D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. DOI:  10.27171/d.cnki.ghdcc.2021.000339.
[17] 李童. 输氢管道泄露燃气燃烧火焰不稳定性和爆炸特性的研究 [D]. 镇江: 江苏科技大学, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000622.

LI T. Research on combustion flame instability and explosion characteristics of gas leaking from hydrogen pipeline [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000622.
[18] 马寅. 乙醇制氢储氢过程中气体泄露燃烧与爆炸基础研究 [D]. 镇江: 江苏科技大学, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000632.

MA Y. Basic research on combustion and explosion of leaked gas from the ethanol produced hydrogen and storage [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000632.
[19]

SHANG S, BI M S, ZHANG C S, et al. Experimental and numerical simulation study of hydrogen explosion suppression by a small amount of ethylene [J]. International journal of hydrogen energy, 2024, 50: 1234-1244. DOI:  10.1016/j.ijhydene.2023.10.042.
[20]

LIANG B, HUANG L, GAO W, et al. Flame evolution and pressure dynamics of methane-hydrogen-air explosion in a horizontal rectangular duct [J]. Fuel, 2024, 357: 129962. DOI:  10.1016/j.fuel.2023.129962.
[21]

SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder technology, 2024, 432: 119166. DOI:  10.1016/j.powtec.2023.119166.
[22]

ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process safety and environmental protection, 2023, 169: 970-981. DOI:  10.1016/j.psep.2022.11.069.
[23]

JI H, FAN S J, LU R J, et al. Explosion suppression characteristics of modified ABC powder driven by argon/CO2 [J]. Powder technology, 2024, 433: 119254. DOI:  10.1016/j.powtec.2023.119254.
[24] 郭宏展, 张衍, 王筱蓉. 氢气-甲烷-乙醇混合燃料的爆炸压力特性 [J]. 爆炸与冲击, 2023, 43(12): 125403. DOI:  10.11883/bzycj-2023-0224.

GUO H Z, ZHANG Y, WANG X R. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures [J]. Explosion and shock waves, 2023, 43(12): 125403. DOI:  10.11883/bzycj-2023-0224.
[25]

CORONADO C J R, CARVALHO J A JR, ANDRADE J C, et al. Flammability limits: a review with emphasis on ethanol for aeronautical applications and description of the experimental procedure [J]. Journal of hazardous materials, 2012, 241-242: 32-54. DOI:  10.1016/j.jhazmat.2012.09.035.
[26]

DRYSDALE D. An introduction to fire dynamics (3rd ed. ) [M]. Chichester: John Wiley & Sons, 2011: 1-34.
[27]

KUCHTA J M. Investigation of fire and explosion accidents in the chemical, mining, and fuel-related industries – a manual [R]. Washington: Bureau of Mines, 1985: 680.
[28]

KUZNETSOV M, KOBELT S, GRUNE J, et al. Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures [J]. International journal of hydrogen energy, 2012, 37(22): 17580-17588. DOI:  10.1016/j.ijhydene.2012.05.049.
[29]

LIU X L, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen–air [J]. International journal of hydrogen energy, 2014, 39(12): 6774-6782. DOI:  10.1016/j.ijhydene.2014.02.001.
[30]

LIANG H, WANG T, LUO Z M, et al. Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors [J]. Fuel, 2024, 356: 129595. DOI:  10.1016/j.fuel.2023.129595.