[1] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战 [J]. 力学进展, 2022, 52(4): 731-808. DOI:  10.6052/1000-0992-22-018.

WEN B R, TIAN X L, LI Z W, et al. Coupling dynamics of floating wind turbines: history, progress and challenges [J]. Progress in mechanics, 2022, 52(4): 731-808. DOI:  10.6052/1000-0992-22-018.
[2] 李怀亮, 黄山田, 王晓飞, 等. 重力锚水平承载力特性的有限元分析 [J]. 中国港湾建设, 2016, 36(1): 6-9. DOI:  10.7640/zggwjs201601002.

LI H L, HUANG S T, WANG X F, et al. Finite element analysis on horizontal bear capacity characteristic of gravity anchor [J]. China harbour engineering, 2016, 36(1): 6-9. DOI:  10.7640/zggwjs201601002.
[3] 康思伟, 张雨蓉, 栾辰宇, 等. 系泊锚在海上浮式风机中的应用 [J]. 中国海洋平台, 2023, 38(3): 16-21. DOI:  10.12226/j.issn.1001-4500.2023.03.20230304.

KANG S W, ZHANG Y R, LUAN C Y, et al. Application of mooring anchors for offshore floating wind turbines [J]. China offshore platform, 2023, 38(3): 16-21. DOI:  10.12226/j.issn.1001-4500.2023.03.20230304.
[4] 国振, 王立忠, 李玲玲. 新型深水系泊基础研究进展 [J]. 岩土力学, 2011, 32(增刊2): 469-477. DOI:  10.16285/j.rsm.2011.s2.060.

GUO Z, WANG L Z, LI L L. Recent advances in research of new deepwater anchor foundations [J]. Rock and soil mechanics, 2011, 32(Suppl.2): 469-477. DOI:  10.16285/j.rsm.2011.s2.060.
[5]

O'BEIRNE C, O'LOUGHLIN C D, WANG D, et al. Capacity of dynamically installed anchors as assessed through field testing and three-dimensional large-deformation finite element analyses [J]. Canadian geotechnical journal, 2015, 52(5): 548-562. DOI:  10.1139/cgj-2014-0209.
[6] 刘海笑, 杨晓亮. 法向承力锚(VLA)——一种适用于深海工程的新型系泊基础 [J]. 海洋技术, 2005, 24(3): 78-82, 87. DOI:  10.3969/j.issn.1003-2029.2005.03.020.

LIU H X, YANG X L. Vertically loaded anchor, a new type of mooring foundations for deep-water offshore engineering [J]. Ocean technology, 2005, 24(3): 78-82, 87. DOI:  10.3969/j.issn.1003-2029.2005.03.020.
[7] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展 [J]. 南方能源建设, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.

CHEN J H, PEI A G, MA Z R, et al. A review of the key technologies for floating offshore wind turbines [J]. Southern energy construction, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.
[8] 伍绍博, 尹海卿, 张开华, 等. 日本漂浮式风电技术现状及未来发展方向 [J]. 中国港湾建设, 2017, 37(6): 108-114. DOI:  10.7640/zggwjs201706024.

WU S B, YIN H Q, ZHANG K H, et al. Status and future development direction of Japan floating wind turbine theology [J]. China harbour engineering, 2017, 37(6): 108-114. DOI:  10.7640/zggwjs201706024.
[9] 搜狐网. “扶摇号”浮式风机桩锚基础首根钢管桩沉桩施工顺利完成 [EB/OL]. (2022-04-30) [2023-08-07]. https://www.sohu.com/a/542724871_121123896.

Sogou Net. "Fuyao No." floating wind turbine pile anchor foundation: the first steel pipe pile drilling construction is successfully completed [EB/OL]. (2022-04-30) [2023-08-07]. https://www.sohu.com/a/542724871_121123896.
[10] 新浪财经. 我国首座深远海抗台型浮式风电平台“海油观澜号”完成浮体总装 [EB/OL]. (2023-01-03) [2023-08-10]. https://finance.sina.com.cn/jjxw/2023-01-03/doc-imxywwtp5923947.shtml.

Sina Finance. China's first offshore anti-typhoon floating wind power platform "Haiyou Guanlan No. " completes hull assembly [EB/OL]. (2023-01-03) [2023-08-10]. https://finance.sina.com.cn/jjxw/2023-01-03/doc-imxywwtp5923947.shtml.
[11] 网易. 锚定深远海!全球首个漂浮式风渔融合项目安装完成 [EB/OL]. (2023-11-08) [2023-11-23]. https://www.163.com/dy/article/IJ1NBGI30514E08N.html.

NetEase. The world's first floating offshore wind and fishery integration project installed [EB/OL]. (2023-11-08) [2023-11-23]. https://www.163.com/dy/article/IJ1NBGI30514E08N.html.
[12] 永福. 永福股份漂浮式吸力锚技术正式获DNV认证发布 [EB/OL]. (2023-10-19) [2023-11-25]. http://www.yongfu.com.cn/show_3915.html.

Yongfu. Yongfu Stock Co., Ltd. 's Floating suction anchor technology officially obtained DNV certification release [EB/OL]. (2023-10-19) [2023-11-25]. http://www.yongfu.com.cn/show_3915.html.
[13] 徐航, 沈侃敏, 芮圣洁. 漂浮式海上风电场共享系泊系统研究综述 [J]. 船舶工程, 2024, 46(4): 142-152 DOI:  10.13788/j.cnki.cbgc.2024.04.19.

XU H, SHEN K M, RUI S J. Review of shared mooring systems for offshore floating wind farms [J]. Ship engineering, 2024, 46(4): 142-152. DOI:  10.13788/j.cnki.cbgc.2024.04.19.
[14]

CONNOLLY P, HALL M. Comparison of pilot-scale floating offshore wind farms with shared moorings [J]. Ocean engineering, 2019, 171: 172-180. DOI:  10.1016/j.oceaneng.2018.08.040.
[15]

HALL M, LOZON E, HOUSNER S, et al. Design and analysis of a ten-turbine floating wind farm with shared mooring lines [J]. Journal of physics: conference series, 2022, 2362: 012016. DOI:  10.1088/1742-6596/2362/1/012016.
[16]

WILSON S, HALL M, HOUSNER S, et al. Linearized modeling and optimization of shared mooring systems [J]. Ocean engineering, 2021, 241: 110009. DOI:  10.1016/j.oceaneng.2021.110009.
[17]

CERFONTAINE B, WHITE D, KWA K, et al. Anchor geotechnics for floating offshore wind: current technologies and future innovations [J]. Ocean engineering, 2023, 279: 114327. DOI:  10.1016/j.oceaneng.2023.114327.
[18]

MOHAJERANI A, BOSNJAK D, BROMWICH D. Analysis and design methods of screw piles: a review [J]. Soils and foundations, 2016, 56(1): 115-128. DOI:  10.1016/j.sandf.2016.01.009.
[19]

DING H Y, WANG L, ZHANG P Y. Study on the lateral bearing capacity of single-helix pile for offshore wind power [C]//Anon. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, June 17-22, 2018. Madrid: ASME, 2018. DOI:  10.1115/OMAE2018-77391.
[20]

HAO D X, WANG D, O'LOUGHLIN C D, et al. Tensile monotonic capacity of helical anchors in sand: interaction between helices [J]. Canadian geotechnical journal, 2019, 56(10: 1534-1543. DOI:  10.1139/cgj-2018-0202.
[21]

TSUHA C D H C. Physical modelling of the behaviour of helical anchors [C]//Anon. Proceedings of the 3rd European Conference on Physical Modelling in Geotechnics (EUROFUGE 2016). 2016.
[22]

CERFONTAINE B, KNAPPETT J A, BROWN M J, et al. A finite element approach for determining the full load-displacement relationship of axially loaded shallow screw anchors, incorporating installation effects [J]. Canadian geotechnical journal, 2021, 58(4): 565-582. DOI:  10.1139/CGJ-2019-0548.
[23]

BRADSHAW A S, CULLEN L, MILLER Z. Field study of group effects on the pullout capacity of "deep" helical piles in sand [J]. Canadian geotechnical journal, 2022, 59(4): 538-545. DOI:  10.1139/CGJ-2021-0072.
[24]

LAI Y, HUANG Y H, GILBERT R B, et al. Behavior of piggy-backed drag embedment anchors in marine soils [J]. Journal of geotechnical and geoenvironmental engineering, 2022, 148(1): 04021167. DOI:  10.1061/(asce)gt.1943-5606.0002713.