[1] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.

HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.
[2] 张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60, 67. DOI:  10.19666/j.rlfd.202106111.

ZHANG Y, WEI S Z, REN X W, et al. Heat supply schemes for a coupling system of condensing unit and wind power [J]. Thermal Power Generation, 2021, 50(11): 54-60, 67. DOI:  10.19666/j.rlfd.202106111.
[3] 任晓辰. 火电机组一次调频和AGC原因与优化分析 [J]. 集成电路应用, 2021, 38(3): 116-117. DOI:  10.19339/j.issn.1674-2583.2021.03.052.

REN X C. Analysis of primary frequency regulation optimization and AGC cause for thermal power units [J]. Applications of IC, 2021, 38(3): 116-117. DOI:  10.19339/j.issn.1674-2583.2021.03.052.
[4] 王宪. 飞轮储能技术在电网频率控制中的应用研究 [D]. 北京: 华北电力大学(北京), 2018.

WANG X. Research on application of flywheel energy storage technology in power grid frequency control [D]. Beijing: North China Electric Power University (Beijing), 2018.
[5] 蒋华婷. 储能系统参与自动发电控制的控制策略和容量配置 [D]. 北京: 华北电力大学(北京), 2019. DOI: 10.27140/d.cnki.ghbbu.2019.001046.

JIANG H T. The control strategy and capacity configuration of energy storage system participating in automatic generation control [D]. Beijing: North China Electric Power University (Beijing), 2019. DOI: 10.27140/d.cnki.ghbbu.2019.001046.
[6] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究 [J]. 中国电机工程学报, 2020, 40(8): 2597-2605. DOI:  10.13334/j.0258-8013.pcsee.190921.

SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage [J]. Proceedings of the CSEE, 2020, 40(8): 2597-2605. DOI:  10.13334/j.0258-8013.pcsee.190921.
[7] 叶刚进, 孙可, 杨翾, 等. 飞轮储能式电动汽车充电站的分布式协同控制策略 [J]. 现代电力, 2020, 37(5): 526-531. DOI:  10.19725/j.cnki.1007-2322.2020.0120.

YE G J, SUN K, YANG X, et al. Research of distributed cooperative control strategy for fast charging stations with flywheel energy storage system [J]. Modern Electric Power, 2020, 37(5): 526-531. DOI:  10.19725/j.cnki.1007-2322.2020.0120.
[8] 赵韩, 杨志轶, 王忠臣. 新型高效飞轮储能技术及其研究现状 [J]. 中国机械工程, 2002, 13(17): 1521-1524. DOI:  10.3321/j.issn:1004-132X.2002.17.025.

ZHAO H, YANG Z Y, WANG Z C. A novel and high efficiency flywheel energy storage technology and its research situation [J]. China Mechanical Engineering, 2002, 13(17): 1521-1524. DOI:  10.3321/j.issn:1004-132X.2002.17.025.
[9] 张文亮, 丘明, 来小康. 储能技术在电力系统中的应用 [J]. 电网技术, 2008, 32(7): 1-9. doi:  10.13335/j.1000-3673.pst.2008.07.001

ZHANG W L, QIU M, LAI X K. Application of energy storage technologies in power grids [J]. Power System Technology, 2008, 32(7): 1-9. doi:  10.13335/j.1000-3673.pst.2008.07.001
[10] 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述 [J]. 储能科学与技术, 2018, 7(5): 765-782. DOI:  10.12028/j.issn.2095-4239.2018.0083.

DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years [J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. DOI:  10.12028/j.issn.2095-4239.2018.0083.
[11] 隋云任. 飞轮储能辅助600MW燃煤机组调频技术研究 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.000692.

SUI Y R. Research on frequency modulation technology of coal burning plants with auxiliary of flywheel energy storage [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020. 000692.
[12] 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计 [J]. 太阳能学报, 2021, 42(3): 105-113. DOI:  10.19912/j.0254-0096.tynxb.2018-1163.

ZHOU H, LI J H, GE C X, et al. Research on improving power quality of wind power system based on energy management system of flywheel energy storage system [J]. Acta Energiae Solaris Sinica, 2021, 42(3): 105-113. DOI:  10.19912/j.0254-0096.tynxb.2018-1163.
[13] 黄登超. 300MW供热机组飞轮储能辅助调频研究 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001593.

HUANG D C. Research on flywheel energy storage auxiliary frequency modulation of 300 MW heating unit [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001593.
[14] 王江波, 赵国亮, 蒋晓春, 等. 飞轮储能技术在电网中的应用综述 [J]. 电力电子技术, 2013, 47(7): 28-30. DOI:  10.3969/j.issn.1000-100X.2013.07.010.

WANG J B, ZHAO G L, JIANG X C, et al. Overview on application of flywheel energy storage technology in power grid [J]. Power Electronics, 2013, 47(7): 28-30. DOI:  10.3969/j.issn.1000-100X.2013.07.010.
[15] 王巍, 高原, 姜晓弋. 飞轮储能技术发展与应用 [J]. 船电技术, 2013, 33(1): 31-34. DOI:  10.13632/j.meee.2013.01.016.

WANG W, GAO Y, JIANG X Y. Developments and applications of flywheel energy storage technology [J]. Marine Electric & Electronic Engineering, 2013, 33(1): 31-34. DOI:  10.13632/j.meee.2013.01.016.
[16] 杨忠生. 飞轮储能控制系统的研究 [D]. 哈尔滨: 哈尔滨理工大学, 2014.

YANG Z S. Study on flywheel energy storage control system [D]. Harbin: Harbin University of Science and Technology, 2014.
[17] 夏清. 太阳能飞轮储能系统充放电研究 [D]. 重庆: 重庆交通大学, 2019. DOI: 10.27671/d.cnki.gcjtc.2019.000847.

XIA Q. Study on charge and discharge of solar flywheel energy storage system [D]. Chongqing: Chongqing Jiaotong University, 2019. DOI: 10.27671/d.cnki.gcjtc.2019.000847.
[18] 毕文骏. 基于飞轮储能的地铁再生制动能量利用研究 [D]. 成都: 西南交通大学, 2016.

BI W J. The study of subway braking energy utilization based on flywheel energy storage [D]. Chengdu: Southwest Jiaotong University, 2016.
[19] 姚远. 应用于风力发电机组的飞轮储能系统建模与仿真研究 [D]. 保定: 华北电力大学, 2017.

YAO Y. Modeling and simulation of flywheel energy storage system applied in wind turbine [D]. Baoding: North China Electric Power University, 2017.
[20] 于苏杭, 郭文勇, 滕玉平, 等. 飞轮储能轴承结构和控制策略研究综述 [J]. 储能科学与技术, 2021, 10(5): 1631-1642. DOI:  10.19799/j.cnki.2095-4239.2021.0237.

YU S H, GUO W Y, TENG Y P, et al. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. DOI:  10.19799/j.cnki.2095-4239.2021.0237.
[21] 李乃安. 主动磁悬浮轴承专家PID控制方法研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017.

LI N A. The research of expert PID control strategy in active electromagnetic bearings [D]. Harbin: Harbin Engineering University, 2017.
[22]

WEI C S, SÖFFKER D. Optimization strategy for PID-Controller design of AMB rotor systems [J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 788-803. DOI:  10.1109/TCST.2015.2476780.
[23]

KANDIL M S, DUBOIS M R, BAKAY L S, et al. Application of second-order sliding-mode concepts to active magnetic bearings [J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 855-864. DOI:  10.1109/TIE.2017.2721879.
[24] 陈亮亮, 祝长生, 王忠博. 电磁轴承高速飞轮转子模态分离–状态反馈解耦控制 [J]. 中国电机工程学报, 2017, 37(18): 5461-5472. DOI:  10.13334/j.0258-8013.pcsee.162066.

CHEN L L, ZHU C S, WANG Z B. Decoupling control for active magnetic bearing high-speed flywheel rotor based on mode separation and state feedback [J]. Proceedings of the CSEE, 2017, 37(18): 5461-5472. DOI:  10.13334/j.0258-8013.pcsee.162066.
[25] 赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制 [J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787. DOI:  10.3785/j.issn.1008-973X.2018.09.019.

ZHAO H Y, ZHU C S. Feedforward decoupling control for magnetically suspended rigid rotor system [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(9): 1777-1787. DOI:  10.3785/j.issn.1008-973X.2018.09.019.
[26] 汤继强, 隗同坤, 宁梦月, 等. 基于反馈线性化的MSCMG转子稳定控制 [J]. 北京航空航天大学学报, 2020, 46(6): 1063-1072. DOI:  10.13700/j.bh.1001-5965.2019.0401.

TANG J Q, WEI T K, NING M Y, et al. Stable control of MSCMG rotor based on feedback linearization [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1063-1072. DOI:  10.13700/j.bh.1001-5965.2019.0401.
[27] 赵宏凯, 蒋科坚. 基于RBF神经网络的电磁轴承基础激励主动控制研究 [J]. 机电工程, 2020, 37(12): 1425-1431. DOI:  10.3969/j.issn.1001-4551.2020.12.005.

ZHAO H K, JIANG K J. Active control for the base motion of active magnetic bearings based on RBF neural network [J]. Journal of Mechanical & Electrical Engineering, 2020, 37(12): 1425-1431. DOI:  10.3969/j.issn.1001-4551.2020.12.005.
[28] 赵晗彤. 基于飞轮储能系统的光伏直流微网电压控制方法的研究 [D]. 保定: 华北电力大学, 2016.

ZHAO H T. Research on voltage control methods of photovoltaic DC microgrid based on flywheel energy storage system [D]. Baoding: North China Electric Power University, 2016.
[29] 王妮妮. 飞轮储能转子结构分析及电力系统应用研究 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001293.

WANG N N. Rotor structure analysis and application in power system of flywheel energy storage [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001293.
[30]

HUTCHINSON A, GLADWIN D T. Optimisation of a wind power site through utilisation of flywheel energy storage technology [J]. Energy Reports, 2020, 6(Supp. 5): 259-265. DOI:  10.1016/j.egyr.2020.03.032.
[31] 王磊, 杜晓强, 宋永端. 用于风电场的飞轮储能矩阵系统协调控制 [J]. 电网技术, 2013, 37(12): 3406-3412. DOI:  10.13335/j.1000-3673.pst.2013.12.024.

WANG L, DU X Q, SONG Y D. Coordinated control of flywheel energy storage matrix system for wind farm [J]. Power System Technology, 2013, 37(12): 3406-3412. DOI:  10.13335/j.1000-3673.pst.2013.12.024.