[1] 房文轩, 公维炜, 郭琪, 等. 太阳能光伏/光热一体化系统性能研究 [J]. 内蒙古电力技术, 2020, 38(6): 17-22. DOI:  10.3969/j.issn.1008-6218.2020.00.102.

FANG W X, GONG W W, GUO Q, et al. Research on performance of solar photovoltaic thermal integrated system [J]. Inner Mongolia electric power, 2020, 38(6): 17-22. DOI:  10.3969/j.issn.1008-6218.2020.00.102.
[2] 黄斌, 赵伟, 廖力达, 等. 政策视角下光伏全产业链的地区差异性分析 [J]. 南方能源建设, 2024, 11(2): 179-188. DOI:  10.16516/j.ceec.2024.2.18.

HUANG B, ZHAO W, LIAO L D, et al. Analysis on regional difference of the whole PV industry chain from the perspective of policy [J]. Southern energy construction, 2024, 11(2): 179-188. DOI:  10.16516/j.ceec.2024.2.18.
[3] 蒋洋. 新能源房屋的探索与实践 [J]. 中国建材, 2012(10): 101-105. DOI:  10.16291/j.cnki.zgjc.2012.10.037.

JIANG Y. Exploration and practice of new energy houses [J]. China building materials, 2012(10): 101-105. DOI:  10.16291/j.cnki.zgjc.2012.10.037.
[4] 赵文艳, 张文福, 马昌恒, 等. 石墨导电混凝土力学性能与热电特性 [J]. 大庆石油学院学报, 2008, 32(6): 83-85, 92. DOI:  10.3969/j.issn.2095-4107.2008.06.022.

ZHAO W Y, ZHANG W F, MA C H, et al. Mechanical and thermoelectric property of graphite electrically conductive concrete [J]. Journal of Daqing Petroleum Institute, 2008, 32(6): 83-85, 92. DOI:  10.3969/j.issn.2095-4107.2008.06.022.
[5] 黄永辉, 饶瑞, 刘春晖, 等. 一种石墨烯导电混凝土: 106082837A [P]. 2016-11-09.

HUANG Y H, RAO R, LIU C H, et al. Graphene electric-conduction concrete: 106082837A [P]. 2016-11-09.
[6] 杨玉山, 董发勤. 掺石墨导电功能基元材料电热混凝土的研究 [J]. 功能材料, 2008, 39(3): 385-387. DOI:  10.3321/j.issn:1001-9731.2008.03.012.

YANG Y S, DONG F Q. On electrothermal concreteof doping gaphite electricity-conductive elementary materials [J]. Journal of functional materials, 2008, 39(3): 385-387. DOI:  10.3321/j.issn:1001-9731.2008.03.012.
[7] 李红英. 导电混凝土的配制及力学和导电性能研究 [J]. 防护工程, 2020, 42(3): 26-31. DOI:  10.3969/j.issn.1674-1854.2020.03.004.

LI H Y. Study on preparation of conductive concrete and its mechanical and conductive properties [J]. Protective engineering, 2020, 42(3): 26-31. DOI:  10.3969/j.issn.1674-1854.2020.03.004.
[8]

LIU S H, GE Y C, WU M Q, et al. Properties and road engineering application of carbon fiber modified-electrically conductive concrete [J]. Structural concrete, 2021, 22(1): 410-421. DOI:  10.1002/suco.201900510.
[9] 周文键, 蓝文坚, 左晓宝, 等. 碳纤维混凝土的导电性及其影响因素分析 [J]. 烟台大学学报(自然科学与工程版), 2012, 25(1): 65-69. DOI:  10.3969/j.issn.1004-8820.2012.01.014.

ZHOU W J, LAN W J, ZUO X B, et al. Conductivity of carbon fiber concrete and its influencing factors [J]. Journal of Yantai University (Natural Science and Engineering Edition), 2012, 25(1): 65-69. DOI:  10.3969/j.issn.1004-8820.2012.01.014.
[10] 吴献, 崔玉茜, 回国臣, 等. 炭黑导电混凝土和碳纤维炭黑导电混凝土电热试验 [J]. 沈阳建筑大学学报(自然科学版), 2015, 31(3): 449-457. DOI:  10.11717/j.issn:2095-1922.2015.03.09.

WU X, CUI Y X, HUI G C, et al. Experimental study on the electro-thermal behavior of conductive concretes with carbon black and carbon fiber-carbon black [J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2015, 31(3): 449-457. DOI:  10.11717/j.issn:2095-1922.2015.03.09.
[11]

GWON S, KIM H, SHIN M. Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber [J]. Cement and concrete composites, 2023, 137: 104942. DOI:  10.1016/J.CEMCONCOMP.2023.104942.
[12]

CHEN B, WU K R, YAO W. Conductivity of carbon fiber reinforced cement-based composites [J]. Cement and concrete composites, 2004, 26(4): 291-297. DOI:  10.1016/S0958-9465(02)00138-5.
[13] 赵若红, 钱兴, 傅继阳, 等. 钢纤维石墨导电混凝土微观结构及其机理分析 [J]. 新型建筑材料, 2014, 41(6): 41-44. DOI:  10.3969/j.issn.1001-702X.2014.06.010.

ZHAO R H, QIAN X, FU J Y, et al. Analysis on the microstructure and mechanism of fiber and graphite in conductive concrete [J]. New building materials, 2014, 41(6): 41-44. DOI:  10.3969/j.issn.1001-702X.2014.06.010.
[14]

ASIF M. Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE [J]. Renewable and sustainable energy reviews, 2016, 55: 1267-1273. DOI:  10.1016/j.rser.2015.05.042.
[15]

MAHMOUD A S, ASIF M, HASSANAIN M A, et al. Energy and economic evaluation of green roofs for residential buildings in hot-humid climates [J]. Buildings, 2017, 7(2): 30. DOI:  10.3390/buildings7020030.
[16]

MENG Q L, CHUNG D D L. Battery in the form of a cement-matrix composite [J]. Cement and concrete composites, 2010, 32(10): 829-839. DOI:  10.1016/j.cemconcomp.2010.08.009.
[17]

BYRNE A, HOLMES N, NORTON B. An overview of the development of cement-based batteries for the cathodic protection of embedded steel in concrete [J]. Civil engineering research in Ireland, 2016, 1(1): 593-597. DOI:  10.21427/D7ZZ3P.
[18]

ZHANG Q N, TANG L P. Rechargeable concrete battery [J]. Buildings, 2021, 11(3): 103. DOI:  10.3390/buildings11030103.
[19] 王泽旭, 李冰辰, 许瑶, 等. 基于过冷相变材料热开关的锂离子电池热管理系统 [J]. 发电技术, 2022, 43(2): 328-340. DOI:  10.12096/j.2096-4528.pgt.21058.

WANG Z X, LI B C, XU Y, et al. Lithium-ion battery thermal management system based on the combination of supercooled phase change material and thermal switch [J]. Power generation technology, 2022, 43(2): 328-340. DOI:  10.12096/j.2096-4528.pgt.21058.
[20] 李泽航, 周浩, 李浩秒, 等. 面向电力系统的液态金属电池储能技术 [J]. 发电技术, 2022, 43(5): 760-774. DOI:  10.12096/j.2096-4528.pgt.22154.

LI Z H, ZHOU H, LI H M, et al. Liquid metal battery energy storage technology for power system [J]. Power generation technology, 2022, 43(5): 760-774. DOI:  10.12096/j.2096-4528.pgt.22154.
[21] 申永鹏, 谢俊超, 梁伟华, 等. 电动汽车混合储能系统CEEMD-PE能量管理策略 [J]. 电力系统保护与控制, 2023, 51(13): 122-131. DOI:  10.19783/j.cnki.pspc.221497.

SHEN Y P, XIE J C, LIANG W H, et al. Electric vehicle hybrid energy storage system CEEMD-PE energy management strategy [J]. Power system protection and control, 2023, 51(13): 122-131. DOI:  10.19783/j.cnki.pspc.221497.
[22] 徐海铭, 黄鹏, 张润樾. 一种汽车锂电池监控系统的设计与实现 [J]. 机电工程技术, 2022, 51(6): 173-176. DOI:  10.3969/j.issn.1009-9492.2022.06.041.

XU H M, HUANG P, ZHANG R Y. Design and implementation of a monitoring system for automotive lithium battery [J]. Mechanical & electrical engineering technology, 2022, 51(6): 173-176. DOI:  10.3969/j.issn.1009-9492.2022.06.041.