[1] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较 [J]. 中国电机工程学报, 2014, 34(31): 5459-5466. DOI:  10.13334/j.0258-8013.pcsee.2014.31.001.

WANG X F, WEI X H, NING L H, et al. Integration techniques and transmission schemes for off-shore wind farms [J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. DOI:  10.13334/j.0258-8013.pcsee.2014.31.001.
[2] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述 [J]. 中国电机工程学报, 2016, 36(14): 3758-3770. DOI:  10.13334/j.0258-8013.pcsee.152756.

CHI Y N, LIANG W, ZHANG Z K, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power [J]. Proceeding of the CSEE, 2016, 36(14): 3758-3770. DOI:  10.13334/j.0258-8013.pcsee.152756.
[3] 郑明, 王长虹. 海上风电场输电方式研究 [J]. 南方能源建设, 2018, 5(2): 99-108. doi:  10.16516/j.gedi.issn2095-8676.2018.02.014

ZHENG M, WANG C H. Research on the transmission mode of offshore wind farm [J]. Southern Energy Construction, 2018, 5(2): 99-108. doi:  10.16516/j.gedi.issn2095-8676.2018.02.014
[4]

Det Norske Veritas. Offshore substations: DNV-ST-0145 [S]. Norway: DNV GL AS, 2020.
[5] 国家能源局. 风电场工程110 kV~220 kV海上升压变电站设计规范: NB/T 31115—2017 [S]. 北京: 中国电力出版社, 2017.

National Energy Administration. Code for 110 kV~220 kV offshore substation design of wind power projects: NB/T 31115-2017 [S]. Beijing: China Electric Power Press, 2017.
[6] 中国船级社. 海上升压站平台指南 [R]. 北京: 中国船级社, 2019.

China Classification Society. Guidelines for offshore substations [R]. Beijing: China Classification Society, 2019.
[7] 杨建军, 俞华锋, 赵生校, 等. 海上风电场升压变电站设计基本要求的研究 [J]. 中国电机工程学报, 2016, 36(14): 3781-3788. DOI:  10.13334/j.0258-8013.pcsee.152761.

YANG J J, YU H F, ZHAO S X, et al. Research on basic requirements of offshore substation design [J]. Proceedings of the CSEE, 2016, 36(14): 3781-3788. DOI:  10.13334/j.0258-8013.pcsee.152761.
[8] 黄玲玲, 汤华, 曹家麟, 等. 交流海上变电站设计相关研究综述 [J]. 中国电机工程学报, 2017, 37(5): 1351-1359. DOI:  10.13334/j.0258-8013.pcsee.162154.

HUANG L L, TANG H, CAO J L, et al. Analysis and prospects of offshore ac substation design technology [J]. Proceedings of the CSEE, 2017, 37(5): 1351-1359. DOI:  10.13334/j.0258-8013.pcsee.162154.
[9] 李德军, 周剑, 钟孝泰, 等. 海上风电场升压站变压器和GIS的设计、应用和展望 [J]. 高压电器, 2021, 57(1): 1-11. DOI:  10.13296/j.1001-1609.hva.2021.01.001.

LI D J, ZHOU J, ZHONG X T, et al. Design, application and prospect of transformer and GIS in booster substation for offshore wind farm [J]. High Voltage Apparatus, 2021, 57(1): 1-11. DOI:  10.13296/j.1001-1609.hva.2021.01.001.
[10] 和庆冬, 朱瑞军, 梅春. 400 MW海上升压站电气主接线方案探讨 [J]. 南方能源建设, 2019, 6(4): 80-85. DOI:  10.16516/j.gedi.issn2095-8676.2019.04.013.

HE Q D, ZHU R J, MEI C. Discussions on the main electrical wiring scheme for a 400 MW offshore substation station [J]. Southern Energy Construction, 2019, 6(4): 80-85. DOI:  10.16516/j.gedi.issn2095-8676.2019.04.013.
[11] 谭任深. 海上风电场工程集电系统拓扑设计研究 [J]. 南方能源建设, 2015, 2(3): 67-71. doi:  10.16516/j.gedi.issn2095-8676.2015.03.013

TAN R S. Research on the topology design of offshore wind farm collection system [J]. Southern Energy Construction, 2015, 2(3): 67-71. doi:  10.16516/j.gedi.issn2095-8676.2015.03.013
[12] 张明, 张哲, 叶军. 海上风电场升压平台布置研究初探 [J]. 上海节能, 2015(2): 80-84. DOI:  10.13770/j.cnki.issn2095-705x.2015.02.006.

ZHANG M, ZHANG Z, YE J. Research on boost platform layout on offshore wind farm [J]. Shanghai Energy Conservation, 2015(2): 80-84. DOI:  10.13770/j.cnki.issn2095-705x.2015.02.006.
[13] 郄鑫, 张哲, 胡君慧, 等. 海上风电场升压变电站电气布置研究 [J]. 供用电, 2015(1): 64-67. DOI:  10.19421/j.cnki.1006-6357.2015.01.011.

QIE X, ZHANG Z, HU J H, et al. Research on the electric layout of the step-up substation of offshore wind farm [J]. Distribution & Utilization, 2015(1): 64-67. DOI:  10.19421/j.cnki.1006-6357.2015.01.011.
[14] 李红涛, 王宾, 唐广银. 海上风电场设施技术规范综述 [J]. 南方能源建设, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.

LI H T, WANG B, TANG G Y. Summary of technical specifications for offshore wind farm facilities [J]. Southern Energy Construction, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.
[15] 戚永乐, 史政. 海上升压站平台不同标准对比研究 [J]. 南方能源建设, 2019, 6(1): 55-65. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.010.

QI Y L, SHI Z. Comparative research on different standards of offshore steel structure platform [J]. Southern Energy Construction, 2019, 6(1): 55-65. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.010.
[16] 郑明, 杨源, 沈云, 等. 海上风电场孤网状态下的备用柴油发电机方案研究 [J]. 南方能源建设, 2019, 6(1): 24-30. doi:  10.16516/j.gedi.issn2095-8676.2019.01.005

ZHENG M, YANG Y, SHEN Y, et al. Research on the standby diesel generator set scheme of offshore wind farm in the state of island operation mode [J]. Southern Energy Construction, 2019, 6(1): 24-30. doi:  10.16516/j.gedi.issn2095-8676.2019.01.005
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 台风型风力发电机组: GB/T 31519—2015[S]. 北京: 中国标准出版社, 2016.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Wind turbine generator system under typhoon condition: GB/T 31519-2015[S]. Beijing: Standards Press of China, 2016.
[18] 中华人民共和国住房和城乡建设部. 海上风力发电场设计标准: GB/T 51308—2019[S]. 北京: 中国计划出版社, 2019.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of offshore wind farm: GB/T 51308-2019[S]. Beijing: China Planning Publishing House, 2019.
[19] 广东省环境保护局, 广东省质量技术监督局. 大气污染物排放限值: DB 44/27—2001 [S]. 广州: [出版者不详], 2002.

Department of Ecology and Environment of Guangdong Province, Administration of Quality and Technology Supervision of Guangdong Province. Emission limits of air pollutants: DB 44/27-2001 [S]. Guangzhou: [s.n.], 2002.