[1] SIKIRU S, OLADOSU T L, AMOSA T I, et al. Hydrogen-powered horizons: transformative technologies in clean energy generation, distribution, and storage for sustainable innovation [J]. International journal of hydrogen energy, 2024, 56: 1152-1182. DOI:  10.1016/j.ijhydene.2023.12.186.
[2] 李小龙, 洪小飞, 陈宇卿. 燃气轮机掺氢燃烧技术 [J]. 南方能源建设, 2023, 10(6): 14-25. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.002.

LI X L, HONG X F, CHEN Y Q. Hydrogen-blended combustion technology in gas turbine [J]. Southern energy construction, 2023, 10(6): 14-25. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.002.
[3]

MENDIBURU A Z, LAUERMANN C H, HAYASHI T C, et al. Ethanol as a renewable biofuel: combustion characteristics and application in engines [J]. Energy, 2022, 257: 124688. DOI:  10.1016/j.energy.2022.124688.
[4] 刘鑫, 田静, 赵梅, 等. 清洁燃料车用乙醇汽油现状及展望 [J]. 云南化工, 2018, 45(7): 1-2. DOI:  10.3969/j.issn.1004-275X.2018.07.001.

LIU X, TIAN J, ZHAO M, et al. Current status and prospects of clean fuel vehicle ethanol gasoline [J]. Yunnan chemical technology, 2018, 45(7): 1-2. DOI:  10.3969/j.issn.1004-275X.2018.07.001.
[5]

AYAD S M M E, BELCHIOR C R P, SODRÉ J R. Hydrogen addition to ethanol-fuelled engine in lean operation to improve fuel conversion efficiency and emissions [J]. International journal of hydrogen energy, 2024, 49: 744-752. DOI:  10.1016/j.ijhydene.2023.09.048.
[6] 王子兴, 杨美娥, 王浩鹏, 等. 基于多孔介质燃烧器的氨重整制氢技术分析 [J]. 南方能源建设, 2023, 10(3): 55-62. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.006.

WANG Z X, YANG M E, WANG H P, et al. Technical analysis of ammonia reforming hydrogen production based on porous medium burner [J]. Southern energy construction, 2023, 10(3): 55-62. DOI:  10.16516/j.gedi.issn2095-8676.2023.03.006.
[7] 罗志斌, 孙潇, 孙翔, 等. 氢能与储能耦合发展的机遇与挑战 [J]. 南方能源建设, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.

LUO Z B, SUN X, SUN X, et al. The coupling development of hydrogen and energy storage technology: opportunities and challenges [J]. Southern energy construction, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.
[8] 赵钦新, 王宗一, 邓世丰, 等. 氢气燃烧技术及其进展 [J]. 科学技术与工程, 2022, 22(36): 15870-15880. DOI:  10.3969/j.issn.1671-1815.2022.36.003.

ZHAO Q X, WANG Z Y, DENG S F, et al. Hydrogen combustion technology and progress [J]. Science technology and engineering, 2022, 22(36): 15870-15880. DOI:  10.3969/j.issn.1671-1815.2022.36.003.
[9]

VASANTHAKUMAR R, LOGANATHAN M, CHOCKALINGAM S, et al. A study on the effect of hydrogen enriched intake air on the characteristics of a diesel engine fueled with ethanol blended diesel [J]. International journal of hydrogen energy, 2023, 48(53): 20507-20524. DOI:  10.1016/j.ijhydene.2023.02.113.
[10]

AYAD S M M E, BELCHIOR C R P, SODRÉ J R. Exergoeconomic analysis of a lean burn engine operating with ethanol and hydrogen addition [J]. International journal of hydrogen energy, 2024, 61: 387-394. DOI:  10.1016/j.ijhydene.2024.02.279.
[11] 刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.

LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.
[12]

WANG Y F, VERHELST S. Comparative analysis and optimisation of hydrogen combustion mechanism for laminar burning velocity calculation in combustion engine modelling [J]. International journal of hydrogen energy, 2024, 56: 880-893. DOI:  10.1016/j.ijhydene.2023.12.214.
[13]

XU C S, WANG Q Y, LI X L, et al. Effect of hydrogen addition on the laminar burning velocity of n-decane/air mixtures: experimental and numerical study [J]. International journal of hydrogen energy, 2022, 47(44): 19263-19274. DOI:  10.1016/j.ijhydene.2022.03.290.
[14]

XIAO H H, LI H Z. Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/AIR premixed flames [J]. Combustion and flame, 2022, 245: 112372. DOI:  10.1016/j.combustflame.2022.112372.
[15]

CHEN J N, YANG X M. Numerical study of hydrogen blending on the laminar combustion characteristics of n-decane/air mixtures [J]. Chemical engineering science, 2023, 277: 118872. DOI:  10.1016/j.ces.2023.118872.
[16]

OPPONG F, LUO Z Y, LI X L, et al. Laminar combustion characteristics of ethyl acetate/hydrogen/air at elevated pressures [J]. Fuel, 2022, 330: 125631. DOI:  10.1016/j.fuel.2022.125631.
[17] 徐一博, 暴秀超, 左子农, 等. 掺氢对汽油预混燃烧特性的影响 [J]. 内燃机工程, 2022, 43(2): 12-19. DOI:  10.13949/j.cnki.nrjgc.2022.02.002.

XU Y B, BAO X C, ZUO Z N, et al. Effects of hydrogen addition on premixed combustion characteristics of gasoline [J]. Chinese internal combustion engine engineering, 2022, 43(2): 12-19. DOI:  10.13949/j.cnki.nrjgc.2022.02.002.
[18]

WANG X R, ZHANG Y, LI T, et al. Investigation of cellularization characteristics of hydrogen-methane-ethanol expanding spherical flame at elevated pressures [J]. Combustion and flame, 2023, 255: 112866. DOI:  10.1016/j.combustflame.2023.112866.
[19] 闫晨朝, 姜根柱, 王筱蓉. 氢气-乙醇-空气预混层流燃烧特性仿真研究 [J]. 新能源进展, 2023, 11(5): 450-456. DOI:  10.3969/j.issn.2095-560X.2023.05.009.

YAN C Z, JIANG G Z, WANG X R. Simulation study on laminar combustion characteristics of hydrogen-ethanol-air premix [J]. Advances in new and renewable energy, 2023, 11(5): 450-456. DOI:  10.3969/j.issn.2095-560X.2023.05.009.
[20]

SUN Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures [J]. International journal of hydrogen energy, 2019, 44(1): 469-476. DOI:  10.1016/j.ijhydene.2018.02.094.
[21]

XIAO P, LEE C F, WU H, et al. Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures [J]. Renewable energy, 2020, 154: 209-222. DOI:  10.1016/j.renene.2020.03.037.
[22]

MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International journal of chemical kinetics, 1999, 31(3): 183-220. DOI: 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X.
[23]

D’ALESSIO F, MATTEUCCI C, LAPENNA P E, et al. Intrinsic instability of lean hydrogen/ammonia premixed flames: influence of soret effect and pressure [J]. Fuel communications, 2024, 19: 100110. DOI:  10.1016/j.jfueco.2024.100110.
[24]

HINTON N, STONE R, CRACKNELL R, et al. Aqueous ethanol laminar burning velocity measurements using constant volume bomb methods [J]. Fuel, 2018, 214: 127-134. DOI:  10.1016/j.fuel.2017.10.113.
[25]

SHANKAR V, FANG X H, HINTON N, et al. Effect of ethanol addition on the laminar burning velocities of gasoline surrogates [J]. Fuel, 2022, 327: 125186. DOI:  10.1016/j.fuel.2022.125186.
[26]

KATOCH A, MILLÁN-MERINO A, KUMAR S. Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures [J]. Fuel, 2018, 231: 37-44. DOI:  10.1016/j.fuel.2018.05.083.
[27]

ECKART S, BENAISSA S, ALSULAMI R A, et al. Laminar burning velocity, emissions, and flame structure of dimethyl ether-hydrogen air mixtures [J]. International journal of hydrogen energy, 2023, 48(91): 35771-35785. DOI:  10.1016/j.ijhydene.2023.05.261.
[28]

WANG Z, JI C W, WANG D, et al. Experimental and numerical study on laminar burning velocity and premixed combustion characteristics of NH3/C3H8/air mixtures [J]. Fuel, 2023, 331: 125936. DOI:  10.1016/j.fuel.2022.125936.
[29]

WANG X R, YAN C Z, ZHANG Y, et al. Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: experimental and numerical analysis [J]. Renewable energy, 2024, 227: 120493. DOI:  10.1016/j.renene.2024.120493.
[30]

XIE S R, LI X, LI T, et al. Experimental and numerical study on the laminar burning velocities of n-decane/toluene/air mixtures at elevated temperatures [J]. Fuel, 2022, 322: 124176. DOI:  10.1016/j.fuel.2022.124176.