[1] LIU C Y, TAN X, LIU Y F. Building a new-type power system to promote carbon peaking and carbon neutrality in the power industry in China [J]. Chinese journal of urban and environmental studies, 2022, 10(2): 2250009. DOI:  10.1142/S2345748122500099.
[2] 张兴, 李明, 郭梓暄, 等. 新能源并网逆变器控制策略研究综述与展望 [J]. 全球能源互联网, 2021, 4(5): 506-515. DOI:  10.19705/j.cnki.issn2096-5125.2021.05.010.

ZHANG X, LI M, GUO Z X, et al. Review and perspectives on control strategies for renewable energy grid-connected inverters [J]. Journal of global energy interconnection, 2021, 4(5): 506-515. DOI:  10.19705/j.cnki.issn2096-5125.2021.05.010.
[3]

WANG C Y, ZHANG L, ZHANG K, et al. Distributed energy storage planning considering reactive power output of energy storage and photovoltaic [J]. Energy reports, 2022, 8(Suppl.10): 562-569. DOI:  10.1016/J.EGYR.2022.05.155.
[4] 杨海晶, 贾学翠, 高东学, 等. 分布式储能在电力系统的应用及现状分析 [J]. 电器与能效管理技术, 2018(3): 47-52. DOI:  10.16628/j.cnki.2095-8188.2018.03.010.

YANG H J, JIA X C, GAO D X, et al. Application and present situation analysis of distributed energy storage in power system [J]. Electrical & energy management technology, 2018(3): 47-52. DOI:  10.16628/j.cnki.2095-8188.2018.03.010.
[5] 张哲深. 含高比例光伏电力系统中光储联合系统的优化控制 [D]. 吉林: 东北电力大学, 2021. DOI:  10.27008/d.cnki.gdbdc.2021.000187.

ZHANG Z S. Optimal control of photovoltaic and energy storage hybrid system in high-proportion photovoltaic power systems [D]. Jilin: Northeast Electric Power University, 2021. DOI:  10.27008/d.cnki.gdbdc.2021.000187.
[6]

RANA M, ROMLIE M F, ABDULLAH M F, et al. A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system [J]. Energy, 2021, 234: 121157. DOI:  10.1016/J.ENERGY.2021.121157.
[7] 潘宇航, 王青松, 陈力. 应用于电网侧削峰填谷的储能系统配置及日出力优化策略 [J]. 供用电, 2022, 39(7): 9-16. DOI:  10.19421/j.cnki.1006-6357.2022.07.002.

PAN Y H, WANG Q S, CHEN L. Energy storage configuration and scheduling optimization strategy applied to peak shaving and valley filling on the grid side [J]. Distribution & utilization, 2022, 39(7): 9-16. DOI:  10.19421/j.cnki.1006-6357.2022.07.002.
[8] 何力. 考虑削峰填谷策略的微电网经济性优化调度研究 [C]//浙江省电力学会. 浙江省电力学会2021年度优秀论文集, 浙江, 2022年7月. 北京: 中国电力出版社, 2022: 10. DOI:  10.26914/c.cnkihy.2022.018164.

HE L. Study on economic optimal dispatch of microgrid considering peak shaping and valley filling strategy [C]//Zhejiang Electric Power Society. Proceedings of 2021 Excellent Papers of Zhejiang Electric Power Society, Zhejiang, July, 2022. Beijing: China Electric Power Press, 2022: 10. DOI:  10.26914/c.cnkihy.2022.018164.
[9] 邵振, 邹晓松, 袁旭峰, 等. 基于改进多目标粒子群优化算法的配电网削峰填谷优化 [J]. 科学技术与工程, 2020, 20(10): 3984-3989. DOI:  10.3969/j.issn.1671-1815.2020.10.028.

SHAO Z, ZOU X S, YUAN X F, et al. Optimization of peak load shifting in distribution network based on improved mopso algorithm [J]. Science technology and engineering, 2020, 20(10): 3984-3989. DOI:  10.3969/j.issn.1671-1815.2020.10.028.
[10] 郭斌. 储能在新能源及用户侧削峰填谷的经济性评估研究 [D]. 上海: 东华大学, 2022. DOI:  10.27012/d.cnki.gdhuu.2022.000177.

GUO B. Economic evaluation of energy storage in new energy and user-side peak shaving and valley filling [D]. Shanghai: Donghua University, 2022. DOI:  10.27012/d.cnki.gdhuu.2022.000177.
[11] 陈雪梅, 陆超, 韩英铎. 电力系统频率问题浅析与频率特性研究综述 [J]. 电力工程技术, 2020, 39(1): 1-9. DOI:  10.12158/j.2096-3203.2020.01.001.

CHEN X M, LU C, HAN Y D. Review of power system frequency problems and frequency dynamic characteristics [J]. Electric power engineering technology, 2020, 39(1): 1-9. DOI:  10.12158/j.2096-3203.2020.01.001.
[12] 侯涛. 辅助新型电力系统调频的电化学储能控制策略 [D]. 吉林: 东北电力大学, 2022. DOI:  10.27008/d.cnki.gdbdc.2022.000048.

HOU T. Control strategy of battery energy storage system participating in frequency regulation in the new power system [D]. Jilin: Northeast Electric Power University, 2022. DO1: 10.27008/d.cnki.gdbdc.2022.000048.
[13] 李谦. 光伏发电参与电网频率调节的研究 [D]. 北京: 华北电力大学(北京), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.000899.

LI Q. Research on the participation of photovoltaic power generation in frequency regulation of power grid [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.000899.
[14]

YAN L Q, SHUI T, XUE T L, et al. Comprehensive control strategy considering hybrid energy storage for primary frequency modulation [J]. Energies, 2022, 15(11): 4079. DOI:  10.3390/EN15114079.
[15] 王立娜, 谭丽平, 徐志强, 等. 锂电池储能电站一次调频设计优化及验证 [J]. 储能科学与技术, 2022, 11(12): 3862-3871. DOI: 10.19799/j.cnki.20 95-4239.2022.0410.

WANG L N, TAN L P, XU Z Q, et al. Lithium battery energy storage power station primary frequency modulation design optimization and verification [J]. Energy storage science and technology, 2022, 11(12): 3862-3871. DOI: 10.19799/j.cnki.20 95-4239.2022.0410.
[16]

SUO D N. Research on primary frequency modulation control strategy of wind power based on energy storage [J]. Journal of physics: conference series, 2022, 2237(1): 012021. DOI:  10.1088/1742-6596/2237/1/012021.
[17] 娄为, 翟海保, 许凌, 等. 风电-储能-电动汽车联合调频控制策略研究 [J]. 可再生能源, 2021, 39(12): 1648-1654. DOI:  10.3969/j.issn.1671-5292.2021.12.014.

LOU W, ZHAI H B, XU L, et al. Research on control strategy of WG-ESS-PEV joint frequency modulation [J]. Renewable energy resources, 2021, 39(12): 1648-1654. DOI:  10.3969/j.issn.1671-5292.2021.12.014.
[18]

ZHAO Z Y, ZHAO T Q, XU P, et al. A double-layer voltage control model for distributed photovoltaic in distribution network [J]. Journal of physics: conference series, 2022, 2404(1): 012004. DOI:  10.1088/1742-6596/2404/1/012004.
[19] 彭怀德, 王欣, 杨超. 江西新能源消纳与储能应用前景分析 [J]. 江西电力, 2021, 45(8): 7-11. DOI:  10.3969/j.issn.1006-348X.2021.08.003.

PENG H D, WANG X, YANG C. Analysis on the application prospect of new energy consumption and storage in Jiangxi [J]. Jiangxi electric power, 2021, 45(8): 7-11. DOI:  10.3969/j.issn.1006-348X.2021.08.003.
[20]

GOLPÎRA H, MESSINA A R, BEVRANI H. Emulation of virtual inertia to accommodate higher penetration levels of distributed generation in power grids [J]. IEEE transactions on power systems, 2019, 34(5): 3384-3394. DOI:  10.1109/TPWRS.2019.2908935.
[21] 彭占磊, 杨之乐, 杨文强, 等. 电化学储能参与电力系统规划运行方法综述 [J]. 综合智慧能源, 2022, 44(6): 37-44. DOI:  10.3969/j.issn.2097-0706.2022.06.004.

PENG Z L, YANG Z L, YANG W Q, et al. Review on planning and operation methods for power system with participation of electrochemical energy storage systems [J]. Integrated intelligent energy, 2022, 44(6): 37-44. DOI:  10.3969/j.issn.2097-0706.2022.06.004.
[22] 王海华, 陆冉, 曹炜, 等. 规模风电并网条件下储能系统参与辅助调峰服务容量配置优化研究 [J]. 电工电能新技术, 2019, 38(6): 42-49. DOI:  10.12067/ATEEE1803022.

WANG H H, LU R, CAO W, et al. Optimal capacity allocation of energy storage system participating auxiliary peak regulation in large-scale wind power integration [J]. Advanced technology of electrical engineering and energy, 2019, 38(6): 42-49. DOI:  10.12067/ATEEE1803022.
[23] 曹金京. 面向新能源消纳的分布式光伏储能系统优化配置 [J]. 自动化应用, 2021(4): 4-6. DOI: 10.19769/j.zdhy.20 21.04.002.

CAO J J. Optimal configuration of distributed photovoltaic energy storage system for new energy consumption [J]. Automation application, 2021(4): 4-6. DOI: 10.19769/j.zdhy.20 21.04.002.
[24] 刘卫健, 黎淑娟, 黄际元, 等. 储能参与风电并网系统的波动平抑控制研究 [J]. 电器与能效管理技术, 2018(16): 41-47, 66. DOI:  10.16628/j.cnki.2095-8188.2018.16.009.

LIU W J, LI S J, HUANG J Y, et al. Study on smoothing the fluctuation of energy storage system in grid with wind power [J]. Electrical & energy management technology, 2018(16): 41-47, 66. DOI:  10.16628/j.cnki.2095-8188.2018.16.009.
[25]

GAO Y, ZHOU S D, KANG X G, et al. Research on grid-connected photovoltaic energy storage to stabilize power fluctuations [J]. Journal of physics: conference series, 2022, 2355(1): 012028. DOI:  10.1088/1742-6596/2355/1/012028.
[26] 黄彦景. 考虑用户侧储能协同的配电网电压质量控制技术研究 [D]. 广州: 广东工业大学, 2022. DOI:  10.27029/d.cnki.ggdgu.2022.001811.

HUANG Y J. Research on voltage quality control technology of distribution network considering energy storage cooperation at user side [D]. Guangzhou: Guangdong University of Technology, 2022. DOI:  10.27029/d.cnki.ggdgu.2022.001811.
[27] 王一飞, 董新伟, 杨飞, 等. 基于配电网电压质量的分布式储能系统优化配置研究 [J]. 热力发电, 2020, 49(8): 126-133. DOI:  10.19666/j.rlfd.202003082.

WANG Y F, DONG X W, YANG F, et al. Optimal configuration of distributed energy storage system based on voltage quality of distribution network [J]. Thermal power generation, 2020, 49(8): 126-133. DOI:  10.19666/j.rlfd.202003082.
[28] 孙永辉, 赵树野, 张秀路, 等. 考虑分布式光伏与储能联合的区域电网电压稳定性控制方法 [J]. 可再生能源, 2022, 40(8): 1115-1122. DOI:  10.13941/j.cnki.21-1469/tk.2022.08.010.

SUN Y H, ZHAO S Y, ZHANG X L, et al. Distributed energy storage coordinated operation strategy for improving voltage stability of regional power grid [J]. Renewable energy resources, 2022, 40(8): 1115-1122. DOI:  10.13941/j.cnki.21-1469/tk.2022.08.010.
[29] 孙阔, 张雪菲, 迟福建, 等. 光伏电站复合储能电压波动抑制双层优化控制方法 [J]. 可再生能源, 2022, 40(3): 402-409. DOI:  10.13941/j.cnki.21-1469/tk.2022.03.015.

SUN K, ZHANG X F, CHI F J, et al. Optimal configuration and control strategy of hybrid energy storage system for smoothing wind power fluctuations [J]. Renewable energy resources, 2022, 40(3): 402-409. DOI:  10.13941/j.cnki.21-1469/tk.2022.03.015.
[30] 傅美平, 毛建容, 宋锐, 等. 大型新能源富集地区储能电站电压无功控制策略 [J]. 电器与能效管理技术, 2022(2): 88-94. DOI:  10.16628/j.cnki.2095-8188.2022.02.014.

FU M P, MAO J R, SONG R, et al. Voltage and reactive power control strategy of energy storage power stations in large new energy enriched areas [J]. Electrical & energy management technology, 2022(2): 88-94. DOI:  10.16628/j.cnki.2095-8188.2022.02.014.
[31] 穆佳豪. 有源配电网中分布式储能多目标优化配置研究 [D]. 汉中: 陕西理工大学, 2022. DOI:  10.27733/d.cnki.gsxlg.2022.000280.

MU J H. Research on multi-objective optimal configuration of distributed energy storage in active distribution network [D]. Hanzhong: Shaanxi University of Technology, 2022. DOI:  10.27733/d.cnki.gsxlg.2022.000280.
[32] 熊力颖, 何晓琼, 韩鹏程, 等. 基于改进控制策略的交直流独立光储电源系统 [J]. 电气工程学报, 2022, 17(3): 95-103. DOI:  10.11985/2022.03.011.

XIONG L Y, HE X Q, HAN P C, et al. AC-DC independent optical storage power system based on improved control strategy [J]. Journal of electrical engineering, 2022, 17(3): 95-103. DOI:  10.11985/2022.03.011.
[33]

ZHANG Q, PEI W H, LIU X D. Advances in electrochemical energy storage systems [J]. Electrochem, 2022, 3(2): 225-228. DOI:  10.3390/ELECTROCHEM3020014.
[34] 田中利. 单相光伏储能逆变系统及其控制方法的研究 [D]. 扬州: 扬州大学, 2019. DOI:  10.27441/d.cnki.gyzdu.2019.000416.

TIAN Z L. Study on single-phase photovoltaic energy storage inverter system and its control method [D]. Yangzhou: Yangzhou University, 2019. DOI:  10.27441/d.cnki.gyzdu.2019.000416.
[35] 汤伟. 一种光伏储能逆变器的研究与实现 [D]. 扬州: 扬州大学, 2022. DOI:  10.27441/d.cnki.gyzdu.2022.002532.

TANG W. Research and implementation of a photovoltaic energy storage inverter [D]. Yangzhou: Yangzhou University, 2022. DOI:  10.27441/d.cnki.gyzdu.2022.002532.
[36] 张克勇, 王冠瑞, 耿新, 等. 含高比例光-储单元的主动配电网并网功率分布式协同控制策略 [J]. 电力科学与技术学报, 2022, 37(2): 147-155. DOI:  10.19781/j.issn.1673-9140.2022.02.017.

ZHANG K Y, WANG G R, GENG X, et al. Distributed cooperative control strategy for grid-connected power in ADN with high proportion of PV-ESS units [J]. Journal of electric power science and technology, 2022, 37(2): 147-155. DOI:  10.19781/j.issn.1673-9140.2022.02.017.
[37] 李建林, 方知进, 谭宇良, 等. 电化学储能系统在整县制屋顶光伏中应用前景分析 [J]. 太阳能学报, 2022, 43(4): 1-12. DOI:  10.19912/j.0254-0096.tynxb.2022-0084.

LI J L, FANG Z J, TAN Y L, et al. Application prospect analysis of electrochemical energy storage technology in county-wide rooftop photovoltaic system [J]. Acta energiae solaris sinica, 2022, 43(4): 1-12. DOI:  10.19912/j.0254-0096.tynxb.2022-0084.
[38] 张耀文, 张政权, 刘庆想, 等. 新型双向储能变流器分析与研究 [J]. 太阳能学报, 2022, 43(4): 82-89. DOI:  10.19912/j.0254-0096.tynxb.2020-0183.

ZHANG Y W, ZHANG Z Q, LIU Q X, et al. Analysis and research of new bidirectional energy storage converter [J]. Acta energiae solaris sinica, 2022, 43(4): 82-89. DOI:  10.19912/j.0254-0096.tynxb.2020-0183.
[39] 张国鑫. 基于开关电容和混合PWM的高增益多电平光伏逆变器 [D]. 广州: 广东工业大学, 2022. DOI:  10.27029/d.cnki.ggdgu.2022.001308.

ZHANG G X. High-gain multilevel photovoltaic inverter based on switched-capacitor and hybrid PWM [D]. Guangzhou: Guangdong University of Technology, 2022. DOI:  10.27029/d.cnki.ggdgu.2022.001308.
[40] 王垚, 汤亚芳, 郝正航, 等. 新型高效率无漏电流单相非隔离光伏逆变器 [J]. 电网与清洁能源, 2022, 38(2): 121-128. DOI:  10.3969/j.issn.1674-3814.2022.02.017.

WANG Y, TANG Y F, HAO Z H, et al. A novel single-phase non-isolated photovoltaic inverter with no leakage current and high efficiency [J]. Power system and clean energy, 2022, 38(2): 121-128. DOI:  10.3969/j.issn.1674-3814.2022.02.017.
[41] 郑越. 光储一体化变流器控制策略及并网/离网切换技术研究 [D]. 兰州: 兰州理工大学, 2021. DOI:  10.27206/d.cnki.ggsgu.2021.000750.

ZHENG Y. Research on control strategy and grid-connected/off-grid switching technology of integrated photovoltaic energy storage converter [D]. Lanzhou: Lanzhou University of Technology, 2021. DOI:  10.27206/d.cnki.ggsgu.2021.000750.
[42] 王子琪. 含风光区域电网的储能选址定容及能量管理研究 [D]. 北京: 华北电力大学(北京), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001443.

WANG Z Q. Research on the location and capacity of energy storage and energy management of regional power grid with wind and solar energy [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI:  10.27140/d.cnki.ghbbu.2021.001443.
[43] 陆燕娟. 含电动汽车的社区微网储能容量配置及能量管理策略研究 [D]. 无锡: 江南大学, 2021. DOI:  10.27169/d.cnki.gwqgu.2021.000900.

LU Y J. Research on energy storage allocation and energy management strategy of community micro-grid including electric vehicles [D]. Wuxi: Jiangnan University, 2021. DOI:  10.27169/d.cnki.gwqgu.2021.000900.
[44] 梁芳玉. 计及配电网网损和电压波动的分布/集中式光储选址定容研究 [D]. 南京: 南京理工大学, 2021. DOI:  10.27241/d.cnki.gnjgu.2021.001649.

LIANG F Y. Distributed/centralized energy storage palacement and capacity selection considering distribution network power losses and voltage swings [D]. Nanjing: Nanjing University of Science & Technology, 2021. DOI:  10.27241/d.cnki.gnjgu.2021.001649.
[45] 王泽. 基于双层决策模型的用户侧储能优化配置方法 [D]. 太原: 太原理工大学, 2021. DOI:  10.27352/d.cnki.gylgu.2021.000588.

WANG Z. Optimal configuration method of user-side energy storage based on two-layer decision model [D]. Taiyuan: Taiyuan University of Technology, 2021. DOI:  10.27352/d.cnki.gylgu.2021.000588.
[46] 曹希桓. 光储充一体化充电站配置优化方法研究 [D]. 兰州: 兰州理工大学, 2021. DOI:  10.27206/d.cnki.ggsgu.2021.000062.

CAO X H. Research on optimization method of charge station configuration for integrated storage and charging [D]. Lanzhou: Lanzhou University of Technology, 2021. DOI:  10.27206/d.cnki.ggsgu.2021.000062.
[47] 张德隆, MUBAARAK S, 蒋思宇, 等. 基于概率潮流的光伏电站中储能系统的优化配置方法 [J]. 储能科学与技术, 2021, 10(6): 2244-2251. DOI:  10.19799/j.cnki.2095-4239.2021.0151.

ZHANG D L, MUBAARAK S, JIANG S Y, et al. Optimal allocation method of energy storage in PV station based on probabilistic power flow [J]. Energy storage science and technology, 2021, 10(6): 2244-2251. DOI:  10.19799/j.cnki.2095-4239.2021.0151.
[48] 赵立军, 张秀路, 韩丽维, 等. 基于多场景的配电网分布式光伏及储能规划 [J]. 现代电力, 2022, 39(4): 460-468. DOI:  10.19725/j.cnki.1007-2322.2021.0257.

ZHAO L J, ZHANG X L, HAN L W, et al. Distributed photovoltaic generation and energy storage planning of distribution network based on multi scenarios [J]. Modern electric power, 2022, 39(4): 460-468. DOI:  10.19725/j.cnki.1007-2322.2021.0257.
[49] 彭伟, 郑连清, 郑天文. 分布式光伏储能系统的优化配置方法 [J]. 四川电力技术, 2022, 45(1): 45-49, 94. DOI:  10.16527/j.issn.1003-6954.20220110.

PENG W, ZHENG L Q, ZHENG T W. Optimal configuration method of distributed photovoltaic energy storage system [J]. Sichuan electric power technology, 2022, 45(1): 45-49, 94. DOI:  10.16527/j.issn.1003-6954.20220110.
[50] 王丹. 基于改进多智能体Q学习的多源联合调频控制策略及储能容量配置研究 [D]. 吉林: 东北电力大学, 2022. DOI:  10.27008/d.cnki.gdbdc.2022.000122.

WANG D. Research on multi-source joint frequency regulation control strategy and energy storage capacity allocation based on improved multi-agent Q-learning [D]. Jilin: Northeast Electric Power University, 2022. DOI:  10.27008/d.cnki.gdbdc.2022.000122.