[1] 蔡绍宽. 平价上网助力海上风电行业发展−未来五年海上风电从业同仁的使命 [J]. 南方能源建设, 2019, 6(2): 7-15. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.002.

CAI S K. Grid parity speeds up the development of offshore wind power industry——the practitioner mission of offshore wind power in the next five years [J]. Southern Energy Construction, 2019, 6(2): 7-15. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.002.
[2] 郑敬宾, 胡畔, 王栋. 复杂土层中自升式平台桩靴安装穿刺预测 [J]. 海洋工程, 2018, 36(3): 123-130. DOI:  10.16483/j.issn.1005-9865.2018.03.017.

ZHENG J B, HU P, WANG D. Prediction of punch-through during spudcan installation in complex soil profiles [J]. The Ocean Engineering, 2018, 36(3): 123-130. DOI:  10.16483/j.issn.1005-9865.2018.03.017.
[3]

HOSSAIN M S, HU Y X, RANDOLPH M, et al. Limiting cavity depth for spudcan foundations penetrating clay [J]. Geotechnique, 2005, 55(9): 679-690. DOI:  10.1680/geot.2005.55.9.679.
[4]

HOSSAIN M S, RANDOLPH M F. New mechanism-based design approach for spudcan foundations on single layer clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1264-1274. DOI:  10.1061/(ASCE)GT.1943-5606.0000054.
[5]

HOSSAIN M S, RANDOLPH M F. Deep-penetrating spudcan foundations on layered clays: numerical analysis [J]. Géotechnique, 2010, 60(3): 171-184. DOI:  10.1680/geot.8.P.040.
[6]

QIU G, HENKE S. Controlled installation of spudcan foundations on loose sand overlying weak clay [J]. Marine Structures, 2011, 24(4): 528-550. DOI:  10.1016/j.marstruc.2011.06.005.
[7]

QIU G, GRABE J. Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay [J]. Canadian Geotechnical Journal, 2012, 49(12): 1393-1407. DOI:  10.1139/T2012-085.
[8]

ZHANG Y, BIENEN B, CASSIDY M J, et al. The undrained bearing capacity of a spudcan foundation under combined loading in soft clay [J]. Marine Structures, 2011, 24(4): 459-477. DOI:  10.1016/j.marstruc.2011.06.002.
[9] 戴笑如, 王建华, 范怡飞. 钻井船插桩CEL数值模拟中的若干问题分析 [J]. 岩土力学, 2018, 39(6): 2278-2286. DOI:  10.16285/j.rsm.2016.2142.

DAI X R, WANG J H, FAN Y F. Issues of numerical simulation of the spudcan penetration based on CEL method [J]. Rock and Soil Mechanics, 2018, 39(6): 2278-2286. DOI:  10.16285/j.rsm.2016.2142.
[10]

LEE K K, RANDOLPH M F, Cassidy M J. Bearing capacity on sand overlying claysoils: a simplified conceptual model [J]. Géotechnique, 2013, 63(15): 1285-1297. DOI:  10.1680/geot.12.P.176.
[11] 许浩, 刘振纹, 祁磊, 等. 自升式平台桩腿穿刺分析及风险控制方法探讨 [J]. 石油工程建设, 2017, 43(6): 17-21. DOI:  10.3969/j.issn.1001-2206.2017.06.004.

XU H, LIU Z W, QI L, et al. Study on punch-through analysis and risk control method of jack-up spudcan [J]. Petroleum Engineering Construction, 2017, 43(6): 17-21. DOI:  10.3969/j.issn.1001-2206.2017.06.004.
[12]

HU P, STANIER S A, Cassidy M J, et al. Predicting peak resistance of spudcan penetrating sand overlying clay [J]. Geotech Geoenviron Eng, 2014, 140(2): 4-13. DOI:  10.1061/(ASCE)GT.1943-5606.0001016.
[13] 李飒, 王耀存, 吴兴州, 等. 夹层土上自升式钻井平台穿刺机理的离心模型试验研究 [J]. 岩土工程学报, 2015, 37(3): 479-486. DOI:  10.11779/CJGE201503011.

LI S, WANG Y C, WU X Z, et al. Centrifugal model tests on mechanism of spudcan penetration of jack-up drilling platform in egg-shell layered soil [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 479-486. DOI:  10.11779/CJGE201503011.
[14]

ISO. Petroleum and natural gas industries-site-specific assessment of mobile offshore unit–part 1: jack-ups: ISO/FDIS 19905-1 [S]. Geneva, Switzerland: International Organizationfor Standardization, 2012.
[15]

HOSSAIN M S, RANDOLPH M F. Deep-penetrating spudcan foundations on layered clays: centrifuge tests [J]. Géotechnique, 2010, 60(3): 157-170. DOI:  10.1680/geot.2011.61.1.85.