[1] |
JIANG Q S, DERAMI H G, GHIM D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation [J]. Journal of materials chemistry A, 2017, 5(35): 18397-18402. DOI: 10.1039/C7TA04834C. |
[2] |
ANIS S F, HASHAIKEH R, HILAL N. Reverse osmosis pretreatment technologies and future trends: a comprehensive review [J]. Desalination, 2019, 452: 159-195. DOI: 10.1016/j.desal.2018.11.006. |
[3] |
YANGALI-QUINTANILLA V, LI Z Y, VALLADARES R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse [J]. Desalination, 2011, 280(1-3): 160-166. DOI: 10.1016/j.desal.2011.06.066. |
[4] |
DUDCHENKO A V, CHEN C X, CARDENAS A, et al. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes [J]. Nature nanotechnology, 2017, 12(6): 557-563. DOI: 10.1038/nnano.2017.102. |
[5] |
HOU W B, CRONIN S B. A review of surface Plasmon resonance-enhanced photocatalysis [J]. Advanced functional materials, 2013, 23(13): 1612-1619. DOI: 10.1002/adfm.201202148. |
[6] |
ZIJLSTRA P, PAULO P M R, ORRIT M. Optical detection of single non-absorbing molecules using the surface Plasmon resonance of a gold nanorod [J]. Nature nanotechnology, 2012, 7(6): 379-382. DOI: 10.1038/nnano.2012.51. |
[7] |
SEH Z W, LIU S H, LOW M, et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation [J]. Advanced materials, 2012, 24(17): 2310-2314. DOI: 10.1002/adma.201104241. |
[8] |
HAN D X, MENG Z G, WU D X, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption [J]. Nanoscale research letters, 2011, 6(1): 457. DOI: 10.1186/1556-276x-6-457. |
[9] |
WANG X, LIU Q C, WU S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion [J]. Advanced materials, 2019, 31(19): 1807716. DOI: 10.1002/adma.201807716. |
[10] |
CHEN Q M, PEI Z Q, XU Y S, et al. A durable monolithic polymer foam for efficient solar steam generation [J]. Chemical science, 2018, 9(3): 623-628. DOI: 10.1039/c7sc02967e. |
[11] |
GHIM D, JIANG Q S, CAO S S, et al. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification [J]. Nano energy, 2018, 53: 949-957. DOI: 10.1016/j.nanoen.2018.09.038. |
[12] |
LI W G, TEKELL M C, HUANG Y, et al. Synergistic high-rate solar steaming and mercury removal with MoS2/C @ polyurethane composite sponges [J]. Advanced energy materials, 2018, 8(32): 1802108. DOI: 10.1002/aenm.201802108. |
[13] |
ZHANG C B, YAN C, XUE Z J, et al. Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation [J]. Small, 2016, 12(38): 5320-5328. DOI: 10.1002/smll.201601723. |
[14] |
ZENG Y, YAO J F, HORRI B A, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles [J]. Energy & environmental science, 2011, 4(10): 4074-4078. DOI: 10.1039/C1ee01532j. |
[15] |
WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles [J]. Advanced materials, 2017, 29(3): 1603730. DOI: 10.1002/adma.201603730. |
[16] |
LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material [J]. ACS nano, 2017, 11(4): 3752-3759. DOI: 10.1021/acsnano.6b08415. |
[17] |
ZHAO J Q, YANG Y W, YANG C H, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination [J]. Journal of materials chemistry A, 2018, 6(33): 16196-16204. DOI: 10.1039/c8ta05569f. |
[18] |
YI L C, CI S Q, LUO S L, et al. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination [J]. Nano energy, 2017, 41: 600-608. DOI: 10.1016/j.nanoen.2017.09.042. |
[19] |
CHEN X B, BURDA C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials [J]. Journal of the American chemical society, 2008, 130(15): 5018-5019. DOI: 10.1021/ja711023z. |
[20] |
TAN Q Y, WANG Y L. Preparation and properties of conductive Ti4O7 surface coating for Ti bipolar plates of proton exchange membrane fuel cells [J]. Journal of alloys and compounds, 2022, 911: 165098. DOI: 10.1016/j.jallcom.2022.165098. |
[21] |
LU H Q, ZHAO B B, PAN R L, et al. Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity [J]. RSC advances, 2014, 4(3): 1128-1132. DOI: 10.1039/c3ra44493g. |
[22] |
LIU N, SCHNEIDER C, FREITAG D, et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation [J]. Nano letters, 2014, 14(6): 3309-3313. DOI: 10.1021/nl500710j. |
[23] |
HAO L, MIYAZAWA K, YOSHIDA H, et al. Visible-light-driven oxygen vacancies and Ti3+ co-doped TiO2 coatings prepared by mechanical coating and carbon reduction [J]. Materials research bulletin, 2018, 97: 13-18. DOI: 10.1016/j.materresbull.2017.08.023. |
[24] |
MYUNG S T, KIKUCHI M, YOON C S, et al. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries [J]. Energy & environmental science, 2013, 6(9): 2609-2614. DOI: 10.1039/c3ee41960f. |
[25] |
YE M M, JIA J, WU Z J, et al. Synthesis of black TiO x nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation [J]. Advanced energy materials, 2017, 7(4): 1601811. DOI: 10.1002/aenm.201601811. |
[26] |
QIU X P, KONG H R, LI Y T, et al. Interface engineering of a Ti4O7 nanofibrous membrane for efficient solar-driven evaporation [J]. ACS applied materials & interfaces, 2022, 14(49): 54855-54866. DOI: 10.1021/acsami.2c15997. |
[27] |
LI K, GAO S M, WANG Q Y, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation [J]. ACS applied materials & interfaces, 2015, 7(17): 9023-9030. DOI: 10.1021/am508505n. |
[28] |
WANG Z Q, WEN B, HAO Q Q, et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2 [J]. Journal of the American chemical society, 2015, 137(28): 9146-9152. DOI: 10.1021/jacs.5b04483. |
[29] |
ZADA I, ZHANG W, SUN P, et al. Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation [J]. Applied materials today, 2020, 20: 100669. DOI: 10.1016/j.apmt.2020.100669. |
[30] |
LIU X H, CHENG H Y, GUO Z Z, et al. Bifunctional, moth-eye-like nanostructured black Titania nanocomposites for solar-driven clean water generation [J]. ACS applied materials & interfaces, 2018, 10(46): 39661-39669. DOI: 10.1021/acsami.8b13374. |
[31] |
CUI Q Z, DONG X T, WANG J X, et al. Direct fabrication of cerium oxide hollow nanofibers by electrospinning [J]. Journal of rare earths, 2008, 26(5): 664-669. DOI: 10.1016/S1002-0721(08)60158-1. |