[1] 李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望 [J]. 中国海上油气, 2022, 34(5): 229-236. DOI:  10.11935/j.issn.1673-1506.2022.05.026.

LI Z C, HU P, MA J X, et al. Analysis and prospect of offshore wind power development in China [J]. China offshore oil and gas, 2022, 34(5): 229-236. DOI:  10.11935/j.issn.1673-1506.2022.05.026.
[2] 廖圣瑄, 陈可仁. 能源岛: 深远海域海上风电破局关键 [J]. 能源, 2021(5): 46-49.

LIAO S X, CHEN K R. Energy island: the key to breaking the offshore wind power situation in the deep sea [J]. Energy, 2021(5): 46-49.
[3] 刘展志, 王诗超, 郝为瀚, 等. 大规模海上风电集中送出建设模式研究 [J]. 南方能源建设, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.

LIU Z Z, WANG S C, HAO W H, et al. Research on construction mode of large-scale offshore wind power centralized transmission [J]. Southern energy construction, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.
[4] 邵先成, 王平. 自然资源框架下海上风电的管理困境及对策 [J]. 海洋开发与管理, 2021, 38(9): 36-42. DOI:  10.20016/j.cnki.hykfygl.2021.09.006.

SHAO X C, WANG P. A study on dilemma of offshore wind power management under the framework of natural resources [J]. Ocean development and management, 2021, 38(9): 36-42. DOI:  10.20016/j.cnki.hykfygl.2021.09.006.
[5] 张旭, 罗先觉, 赵峥, 等. 以风电场效益最大为目标的风电装机容量优化 [J]. 电网技术, 2012, 36(1): 237-240. DOI:  10.13335/j.1000-3673.pst.2012.01.042.

ZHANG X, LUO X J, ZHAO Z, et al. Installed capacity optimization of wind turbine generators considering maximum economic benefit of wind farm [J]. Power system technology, 2012, 36(1): 237-240. DOI:  10.13335/j.1000-3673.pst.2012.01.042.
[6] 江岳文, 陈晓榕. 基于D-U空间混合多属性决策的风电场装机容量优化 [J]. 电网技术, 2019, 43(12): 4451-4460. DOI:  10.13335/j.1000-3673.pst.2019.0136.

JIANG Y W, CHEN X R. Optimization of installed capacity of wind farm with mixed multiple attribute decisions based on D-U space [J]. Power system technology, 2019, 43(12): 4451-4460. DOI:  10.13335/j.1000-3673.pst.2019.0136.
[7] 黄杨, 陈红坤, 回俊龙, 等. 考虑风电接纳能力约束的风机装机容量优化 [J]. 武汉大学学报(工学版), 2015, 48(6): 842-847. DOI:  10.14188/j.1671-8844.2015-06-019.

HUANG Y, CHEN H K, HUI J L, et al. Wind power capacity optimization considering accommodation of wind power constraints [J]. Engineering journal of Wuhan university, 2015, 48(6): 842-847. DOI:  10.14188/j.1671-8844.2015-06-019.
[8] 姜欣, 陈红坤, 回俊龙, 等. 计及弃风的风电场最优装机容量 [J]. 电工技术学报, 2016, 31(18): 160-168. DOI:  10.3969/j.issn.1000-6753.2016.18.020.

JIANG X, CHEN H K, HUI J L, et al. Optimal installed capacity of wind farm considering wind power curtailment [J]. Transactions of China electrotechnical society, 2016, 31(18): 160-168. DOI:  10.3969/j.issn.1000-6753.2016.18.020.
[9] 江岳文, 张金辉. 考虑风电接纳水平及负荷增长的海上风电场多阶段规划 [J]. 电力自动化设备, 2022, 42(2): 85-91,111. DOI:  10.16081/j.epae.202111018.

JIANG Y W, ZHANG J H. Multi-stage planning of offshore wind farm considering wind power accommodation level and load increase [J]. Electric power automation equipment, 2022, 42(2): 85-91,111. DOI:  10.16081/j.epae.202111018.
[10] 张金辉, 江岳文. 考虑市场竞价与接纳的海上风电场装机容量及布局分层优化 [J]. 电网技术, 2020, 44(10): 3837-3845. DOI:  10.13335/j.1000-3673.pst.2019.2441.

ZHANG J H, JIANG Y W. Hierarchical optimization of installed capacity and layout of offshore wind farm considering market bidding and acceptance [J]. Power system technology, 2020, 44(10): 3837-3845. DOI:  10.13335/j.1000-3673.pst.2019.2441.
[11]

MORTENSEN N G, DAVIS N, BADGER J, et al. Global wind atlas: validation and uncertainty [R]. Denmark: Technical University of Demark, 2017.
[12] 中国电气工业协会. 海上风电场微观选址阶段发电量计算技术规范: T/CEEIA 561—2021 [S]. 北京: 科学技术文献出版社, 2022.

China Electrical Industry Association. Technical specification for power generation calculation at micro-siting stage of offshore wind farms: T/CEEIA 561—2021 [S]. Beijing: Scientific and Technical Literature Press, 2022.
[13] 中华人民共和国住房和城乡建设部. 海上风力发电场设计标准: GB/T 51308—2019 [S]. 北京: 中国计划出版社, 2019.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of offshore wind farm: GB/T 51308—2019 [S]. Beijing: China Planning Press, 2019.
[14] 崔冬林, 沙伟, 刘树洁, 等. 海上相邻风电场间的“尾流效应”实例分析 [J]. 南方能源建设, 2023, 10(1): 21-28. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.003.

CUI D L, SHA W, LIU S J, et al. Case study of "wake effect" of adjacent offshore wind farms [J]. Southern energy construction, 2023, 10(1): 21-28. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.003.
[15]

JENSEN N O. A note on wind generator interaction [R]. Demark: Risø National Laboratory, 1983.
[16] 刘沙, 王中权, 蔡彦枫. 海上风电场运行期尾流损失分析 [J]. 南方能源建设, 2019, 6(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.011.

LIU S, WANG Z Q, CAI Y F. Wake loss analysis of offshore wind farm in operation [J]. Southern energy construction, 2019, 6(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.011.
[17]

BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes [J]. Renewable energy, 2014, 70: 116-123. DOI:  10.1016/j.renene.2014.01.002.
[18] 张晓东, 张梦雨, 白鹤. 基于高斯分布的风电场尾流效应计算模型 [J]. 华北电力大学学报, 2017, 44(5): 99-103. DOI:  10.3969/j.ISSN.1007-2691.2017.05.14.

ZHANG X D, ZHANG M Y, BAI H. Wind farm wake effect calculation model based on Gaussian distribution [J]. Journal of North China Electric Power University, 2017, 44(5): 99-103. DOI:  10.3969/j.ISSN.1007-2691.2017.05.14.
[19] 白鹤鸣, 王尼娜, 万德成. 基于不同解析尾流模型的海上风电场数值模拟 [J]. 中国造船, 2020, 61(增刊2): 186-198. DOI:  10.3969/j.issn.1000-4882.2020.z2.020.

BAI H M, WANG N N, WAN D C. Numerical solutions of offshore wind farm based on different analytical wake models [J]. Shipbuilding of China, 2020, 61(Suppl. 2): 186-198. DOI:  10.3969/j.issn.1000-4882.2020.z2.020.
[20] 朱金阳, 黎波. Fuga模型原理浅析 [J]. 风力发电, 2017(5): 27-31.

ZHU J Y, LI B. Analysis of the principle of Fuga model [J]. Wind power, 2017(5): 27-31.
[21] 国家能源局. 风电场工程微观选址技术规范: NB/T 10103—2018 [S]. 北京: 中国水利水电出版社, 2019.

National Energy Administration. Technical code for micro - siting of wind power projects: NB/T 10103—2018 [S]. Beijing: China Water & Power Press, 2019.