[1] 牛海峰, 李向辉, 梁峰, 等. 面向海上风电开发建设的工程地质模型及应用研究 [J]. 南方能源建设, 2023, 10(4): 57-70. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.006.

NIU H F, LI X H, LIANG F, et al. Research on the engineering geological model and its application for offshore wind power development and construction [J]. Southern energy construction, 2023, 10(4): 57-70. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.006.
[2]

SCHUPP M F, KAFAS A, BUCK B H, et al. Fishing within offshore wind farms in the North Sea: stakeholder perspectives for multi-use from Scotland and Germany [J]. Journal of environmental management, 2021, 279: 111762. DOI:  10.1016/j.jenvman.2020.111762.
[3]

BUCK B H, LANGAN R. Aquaculture perspective of multi-use sites in the open ocean [M]. Cham: Springer, 2017. DOI:  10.1007/978-3-319-51159-7.
[4] 李亚杰, 闫中杰, 刘扬, 等. 海上风电与海洋养殖融合发展现状与展望 [J]. 船舶工程, 2023, 45(增刊1): 166-170. DOI:  10.13788/j.cnki.cbgc.2023.S1.33.

LI Y J, YAN Z J, LIU Y, et al. Integration of offshore wind power and marine aquaculture [J]. Ship engineering, 2023, 45(Suppl.1): 166-170. DOI:  10.13788/j.cnki.cbgc.2023.S1.33.
[5]

KRONE R, GUTOW L, BREY T, et al. Mobile demersal megafauna at artificial structures in the German Bight-likely effects of offshore wind farm development [J]. Estuarine, coastal and shelf science, 2013, 125: 1-9. DOI:  10.1016/j.ecss.2013.03.012.
[6]

BUCK B H, KRAUSE G, ROSENTHAL H. Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints [J]. Ocean & coastal management, 2004, 47(3/4): 95-122. DOI:  10.1016/j.ocecoaman.2004.04.002.
[7]

MICHLER-CIELUCH T, KRAUSE G. Perceived concerns and possible management strategies for governing 'wind farm - mariculture integration' [J]. Marine policy, 2008, 32(6): 1013-1022. DOI:  10.1016/j.marpol.2008.02.008.
[8]

BUCK B H, KRAUSE G, MICHLER-CIELUCH T, et al. Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms [J]. Helgoland marine research, 2008, 62(3): 269-281. DOI:  10.1007/s10152-008-0115-x.
[9]

MICHLER-CIELUCH T, KRAUSE G, BUCK B H. Reflections on integrating operation and maintenance activities of offshore wind farms and mariculture [J]. Ocean & coastal management, 2009, 52(1): 57-68. DOI:  10.1016/j.ocecoaman.2008.09.008.
[10]

HUANG C T, AFERO F, HUNG C W, et al. Economic feasibility assessment of cage aquaculture in offshore wind power generation areas in Changhua County, Taiwan [J]. Aquaculture, 2022, 548(Pt 1): 737611. DOI:  10.1016/j.aquaculture.2021.737611.
[11]

WANG T Y, XU T J, WANG S, et al. Hydrodynamic analysis of the combined structure of offshore monopile wind turbine foundation and aquaculture cage [J]. Ocean engineering, 2023, 287: 115796. DOI:  10.1016/j.oceaneng.2023.115796.
[12]

ZHANG T Y, WANG W H, LI X, et al. Vibration mitigation of an integrated structure consisting of a monopile offshore wind turbine and aquaculture cage under earthquake, wind, and wave loads [J]. Mechanics of advanced materials and structures, 2023, 30(4): 627-646. DOI:  10.1080/15376494.2021.2020941.
[13]

LI N, SHI W, HAN X, et al. Dynamic analysis of an integrated offshore structure comprising a jacket-supported offshore wind turbine and aquaculture steel cage [J]. Ocean engineering, 2023, 274: 114059. DOI:  10.1016/j.oceaneng.2023.114059.
[14] 林旻, 邬骞力, 田会元, 等. 海上风机与养殖网箱融合系统中网箱系泊绳张力与导管架基础结构安全性研究 [J]. 水产学报, 2024, 48(6): 107-119.

LIN M, WU Q L, TIAN H Y, et al. Mooring rope tension and jacket infrastructure safety in integrated system of offshore wind turbine and fish cage [J]. Journal of fisheries of China, 2024, 48(6): 107-119.
[15]

ZHENG X Y, LEI Y. Stochastic response analysis for a floating offshore wind turbine integrated with a steel fish farming cage [J]. Applied sciences, 2018, 8(8): 1229. DOI:  10.3390/app8081229.
[16]

LEI Y, ZHENG X Y, LI W, et al. Experimental study of the state-of-the-art offshore system integrating a floating offshore wind turbine with a steel fish farming cage [J]. Marine structures, 2021, 80: 103076. DOI:  10.1016/j.marstruc.2021.103076.
[17]

LEI Y, LI W, ZHENG X Y, et al. A floating system integrating a wind turbine with a steel fish farming cage: experimental validation of the hydrodynamic model [J]. Marine structures, 2024, 93: 103525. DOI:  10.1016/j.marstruc.2023.103525.
[18]

ZHENG H D, ZHENG X Y, LEI Y, et al. Experimental validation on the dynamic response of a novel floater uniting a vertical-axis wind turbine with a steel fishing cage [J]. Ocean engineering, 2022, 243: 110257. DOI:  10.1016/j.oceaneng.2021.110257.
[19]

ZHANG C L, WANG S M, CUI M C, et al. Modeling and dynamic response analysis of a submersible floating offshore wind turbine integrated with an aquaculture cage [J]. Ocean engineering, 2022, 263: 112338. DOI:  10.1016/j.oceaneng.2022.112338.
[20]

CAO S G, CHENG Y L, DUAN J L, et al. Experimental investigation on the dynamic response of an innovative semi-submersible floating wind turbine with aquaculture cages [J]. Renewable energy, 2022, 200: 1393-1415. DOI:  10.1016/j.renene.2022.10.072.
[21]

CHU Y I, WANG C M. Combined spar and partially porous wall fish cage for offshore site [M]//WANG C M, DAO V, KITIPORNCHAI S. EASEC16. Singapore: Springer, 2020: 569-581. DOI:  10.1007/978-981-15-8079-6_55.
[22]

CHU Y I, WANG C M. Hydrodynamic response analysis of combined spar wind turbine and fish cage for offshore fish farms [J]. International journal of structural stability and dynamics, 2020, 20(9): 2050104. DOI:  10.1142/s0219455420501047.
[23]

CHU Y I, WANG C M, ZHANG H. A frequency domain approach for analyzing motion responses of integrated offshore fish cage and wind turbine under wind and wave actions [J]. Aquacultural engineering, 2022, 97: 102241. DOI:  10.1016/j.aquaeng.2022.102241.
[24]

CHU Y I, WANG C M. Design development of porous collar barrier for offshore floating fish cage against wave action, debris and predators [J]. Aquacultural engineering, 2021, 92: 102137. DOI:  10.1016/j.aquaeng.2020.102137.
[25]

MOE H, FREDHEIM A, HOPPERSTAD O S. Structural analysis of aquaculture net cages in current [J]. Journal of fluids and structures, 2010, 26(3): 503-516. DOI:  10.1016/j.jfluidstructs.2010.01.007.
[26] 唐鸣夫. 波流作用下网结构水动力特性研究 [D]. 大连: 大连理工大学, 2020. DOI:  10.26991/d.cnki.gdllu.2020.004072.

TANG M F. Study on hydrodynamic characteristics of net structure in wave and current [D]. Dalian: Dalian University of Technology, 2020. DOI:  10.26991/d.cnki.gdllu.2020.004072.
[27]

BI C W, ZHAO Y P, DONG G H, et al. Numerical study on wave attenuation inside and around a square array of biofouled net cages [J]. Aquacultural engineering, 2017, 78: 180-189. DOI:  10.1016/j.aquaeng.2017.07.006.