[1] |
卢奇秀. 电力低碳转型开启加速模式 [N]. 中国能源报, 2024-08-12(008).
LU Q X. Low-carbon transformation of electric power opens the accelerated mode [N]. China Energy News, 2024-08-12(008). |
[2] |
罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13 DOI: 10.16516/j.gedi.issn2095-8676.2023.06.001.
LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong Province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.001. |
[3] |
LIANG Z W, FU K Y, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents [J]. Chinese journal of chemical engineering, 2016, 24(2): 278-288. DOI: 10.1016/j.cjche.2015.06.013. |
[4] |
OKO E, WANG M H, JOEL A S. Current status and future development of solvent-based carbon capture [J]. International journal of coal science & technology, 2017, 4(1): 5-14. DOI: 10.1007/s40789-017-0159-0. |
[5] |
窦立荣, 孙龙德, 吕伟峰, 等. 全球二氧化碳捕集、利用与封存产业发展趋势及中国面临的挑战与对策 [J]. 石油勘探与开发, 2023, 50(5): 1083-1096. DOI: 10.11698/PED.20230331.
DOU L R, SUN L D, LV W F, et al. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China [J]. Petroleum exploration and development, 2023, 50(5): 1083-1096. DOI: 10.11698/PED.20230331. |
[6] |
魏青, 张振涛, 王瑞祥, 等. 醇胺法碳捕集技术的研究进展 [J]. 环境工程技术学报, 2015, 15(1): 90-99. DOI: 10.12153/j.issn.1674-991X.20240228.
WEI Q, ZHANG Z T, WANG R X, et al. Research progress of carbon capture technology by alcohol amine method [J]. Journal of environmental engineering technology, 2015, 15(1): 90-99. DOI: 10.12153/j.issn.1674-991X.20240228. |
[7] |
侯成龙, 来振亚, 陈嘉映, 等. 浙江省碳捕集利用与封存技术研究进展 [J]. 南方能源建设, 2024, 11(5): 26-36. DOI: 10.16516/j.ceec.2024.5.03.
HOU C L, LAI Z Y, CHEN J Y, et al. Research review of CO2 capture, utilization and storage technology in Zhejiang Province [J]. Southern energy construction, 2024, 11(5): 26-36. DOI: 10.16516/j.ceec.2024.5.03. |
[8] |
冯琰磊, 王亚飞. 大规模CCUS在新型燃煤发电机组中的应用 [J]. 电力勘测设计, 2025(1): 73-78. DOI: 10.13500/j.dlkcsj.issn1671-9913.2025.01.014.
FENG Y L, WANG Y F. Application of large-scale CCUS in new type coal-fired power generation units [J]. Electric power survey & design, 2025(1): 73-78. DOI: 10.13500/j.dlkcsj.issn1671-9913.2025.01.014. |
[9] |
王珺瑶. 燃烧后化学吸收法脱碳技术能效研究与综合评价 [D]. 天津: 天津大学, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.000294.
WANG J Y. Energetic analysis and comprehensive assessment on post-combustion CO2 capture with chemical absorption [D]. Tianjin: Tianjin University, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.000294. |
[10] |
徐耀锋. 面向化学吸收法碳捕集系统的热力学循环构建方法与能效研究 [D]. 天津: 天津大学, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.003213.
XU Y F. Construction method and energy efficiency analysis of thermodynamic cycle for chemical absorption carbon capture [D]. Tianjin: Tianjin University, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.003213. |
[11] |
沈海燕, 李芳芹, 任建兴, 等. 化学吸收法捕集二氧化碳的研究进展 [J]. 无机盐工业, 2024, 56(5): 11-19, 44. DOI: 10.19964/j.issn.1006-4990.2023-0446.
SHEN H Y, LI F Q, REN J X, et al. Research progress on chemical absorption method for capturing carbon dioxide [J]. Inorganic chemicals industry, 2024, 56(5): 11-19, 44. DOI: 10.19964/j.issn.1006-4990.2023-0446. |
[12] |
林海周, 吴大卫, 范永春, 等. 燃煤电厂烟气CO2化学吸收捕集液-液两相吸收剂开发进展 [J]. 洁净煤技术, 2023, 29(4): 21-30. DOI: 10.13226/j.issn.1006-6772.RM23040101.
LIN H Z, WU D W, FAN Y C, et al. Development progress of liquid-liquid biphasic solvents for carbon dioxide chemical absorption capture from flue gas of coal-fired power plants [J]. Clean coal technology, 2023, 29(4): 21-30. DOI: 10.13226/j.issn.1006-6772.RM23040101. |
[13] |
张一楠,熊小鹤,周寅聪,等. CO2捕集、利用及封存技术研究进展 [J/OL]. (2024-12-03) [2024-12-20]. https://doi.org/10.13225/j.cnki.jccs.2024.1282.
ZHANG Y N, XIONG X H, ZHOU Y C, et al. Research progress of CO2 capture, utilization and storage technology [J/OL]. https://doi.org/10.13225/j.cnki.jccs.2024.1282. |
[14] |
贺雪峰, 樊灏, 沈振兴, 等. 燃煤电厂烟气CO2捕集化学吸收剂研发进展 [J]. 洁净煤技术, 2024, 30(11): 82-96. DOI: 10.13226/j.issn.1006-6772.NN23102601.
He X F, Fan H, Shen Z X, et al. Research and development progress of chemical absorbent for CO2 capture in flue gas of coal-fired power plants [J]. Clean coal technology, 2024, 30(11): 82-96. DOI: 10.13226/j.issn.1006-6772.NN23102601. |
[15] |
向国育, 申长俊, 陆诗建, 等. 二氧化碳捕集、利用与封存示范工程进展 [J]. 低碳化学与化工, 2025, 50(3): 113-122. DOI: 10.12434/j.issn.2097-2547.20240202.
XIANG G Y, SHEN C J, LU S J, et al. Progress of carbon dioxide capture, utilization and storage demonstration engineerings [J]. Low-carbon chemistry and chemical engineering, 2025, 50(3): 113-122. DOI: 10.12434/j.issn.2097-2547.20240202. |
[16] |
HEKMATMEHR H, ESMAEILI A, POURMAHDI M, et al. Carbon capture technologies: a review on technology readiness level [J]. Fuel, 2024, 363: 130898. DOI: 10.1016/j.fuel.2024.130898. |
[17] |
孙路长, 王争荣, 吴冲, 等. 燃煤电厂万吨级碳捕集工程设计与运行优化研究 [J]. 华电技术, 2021, 43(6): 69-78. DOI: 10.3969/j.issn.1674-1951.2021.06.009.
SUN L C, WANG Z R, WU C, et al. Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants [J]. Huadian technology, 2021, 43(6): 69-78. DOI: 10.3969/j.issn.1674-1951.2021.06.009. |
[18] |
赵红涛, 王树民, 张曼. 低能耗碳捕集技术及燃煤机组热经济性研究 [J]. 现代化工, 2021, 41(1): 210-214. DOI: 10.16606/j.cnki.issn0253-4320.2021.01.042.
ZHAO H T, WANG S M, ZHANG M. Research on low energy consumption CO2 capture technology and thermal economy of coal-fired units [J]. Modern chemical industry, 2021, 41(1): 210-214. DOI: 10.16606/j.cnki.issn0253-4320.2021.01.042. |
[19] |
刁保圣, 顾欣, 冯琰磊. 大规模二氧化碳捕集及综合利用示范 [J]. 锅炉技术, 2021, 52(6): 76-80. DOI: 10.3969/j.issn.1672-4763.2021.06.015.
DIAO B S, GU X, FENG Y L. Large scale carbon dioxide capture and comprehensive utilization demonstration [J]. Boiler technology, 2021, 52(6): 76-80. DOI: 10.3969/j.issn.1672-4763.2021.06.015. |
[20] |
OKUNO S, NAKAMURA S, YAMANAKA Y, et al. Demonstration results on advanced amine solvents, packings and process at IHI's AIOI PILOT PLANT [J]. Energy procedia, 2017, 114: 1282-1287. DOI: 10.1016/j.egypro.2017.03.1236. |
[21] |
SINGH A, STÉPHENNE K. Shell Cansolv CO2 capture technology: achievement from First Commercial Plant [J]. Energy procedia, 2014, 63: 1678-1685. DOI: 10.1016/j.egypro.2014.11.177. |
[22] |
NAKAMURA S, YAMANAKA Y, MATSUYAMA T, et al. IHI s amine-based CO2 capture technology for coal fired power plant [J]. Energy procedia, 2013, 37: 1897-1903. DOI: 10.1016/j.egypro.2013.06.070. |
[23] |
张婷. 燃煤电站全工况脱碳性能分析及运行策略优化 [D]. 北京: 华北电力大学(北京), 2023. DOI: 10.27140/d.cnki.ghbbu.2023.000254.
ZHANG T. Analysis of decarbonization performance and optimization of operation strategy of coal-fired power stations under all working conditions [D]. Beijing: North China Electric Power University (Beijing), 2023. DOI: 10.27140/d.cnki.ghbbu.2023.000254. |
[24] |
王丹. 二氧化碳捕集、利用与封存技术全链分析与集成优化研究 [D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020. DOI: 10.27540/d.cnki.ggrws.2020.000045.
WANG D. Full chain analysis, integration and optimization of CO2 capture, utilization and storage technology [D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2020. DOI: 10.27540/d.cnki.ggrws.2020.000045. |
[25] |
何卉, 方梦祥, 王涛, 等. 燃煤烟气化学吸收碳捕集系统分析与优化 [J]. 化工进展, 2018, 37(6): 2406-2412. DOI: 10.16085/j.issn.1000-6613.2017-1417.
HE H, FANG M X, WANG T, et al. Analysis and optimization of post-combustion CO2 capture system based on chemical absorption [J]. Chemical industry and engineering progress, 2018, 37(6): 2406-2412. DOI: 10.16085/j.issn.1000-6613.2017-1417. |
[26] |
吴其荣, 陶建国, 范宝成, 等. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析 [J]. 热力发电, 2022, 51(10): 28-34. DOI: 10.19666/j.rlfd.202206112.
WU Q R, TAO J G, FAN B C, et al. Technical route selection and economic sensitivity analysis of large-scale carbon capture in coal-fired power plant [J]. Thermal power generation, 2022, 51(10): 28-34. DOI: 10.19666/j.rlfd.202206112. |
[27] |
XUE B Y, YU Y M, CHEN J. Process simulation and energy consumption analysis for CO2 capture with different solvents [M]//ALOUI F, DINCER I. Exergy for A Better Environment and Improved Sustainability 2. Cham: Springer, 2018: 25-45. DOI: 10.1007/978-3-319-62575-1_3. |
[28] |
LIANG Z W, GAO H X, RONGWONG W, et al. Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture [J]. International journal of greenhouse gas control, 2015, 34: 75-84. DOI: 10.1016/j.ijggc.2014.12.019. |
[29] |
WILCOX J. Carbon capture [M]. New York: Springer, 2012: 219-229. |
[30] |
SANPASERTPARNICH T, IDEM R, BOLEA I, et al. Integration of post-combustion capture and storage into a pulverized coal-fired power plant [J]. International journal of greenhouse gas control, 2010, 4(3): 499-510. DOI: 10.1016/j.ijggc.2009.12.005. |
[31] |
CAU G, COCCO D, TOLA V. Performance assessment of USC power plants integrated with CCS and concentrating solar collectors [J]. Energy conversion and management, 2014, 88: 973-984. DOI: 10.1016/j.enconman.2014.09.040. |
[32] |
VERSTEEG P, RUBIN E S. A technical and economic assessment of ammonia-based post-combustion CO2 capture at coal-fired power plants [J]. International journal of greenhouse gas control, 2011, 5(6): 1596-1605. DOI: 10.1016/j.ijggc.2011.09.006. |
[33] |
CORMOS C C. Assessment of chemical absorption/adsorption for post-combustion CO2 capture from Natural Gas Combined Cycle (NGCC) power plants [J]. Applied thermal engineering, 2015, 82: 120-128. DOI: 10.1016/j.applthermaleng.2015.02.054. |
[34] |
OEXMANN J, HENSEL C, KATHER A. Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate [J]. International journal of greenhouse gas control, 2008, 2(4): 539-552. DOI: 10.1016/j.ijggc.2008.04.002. |
[35] |
LINDQVIST K, JORDAL K, HAUGEN G, et al. Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants [J]. Energy, 2014, 78: 758-767. DOI: 10.1016/j.energy.2014.10.070. |
[36] |
KHALILPOUR R, ABBAS A. HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture [J]. International journal of greenhouse gas control, 2011, 5(2): 189-199. DOI: 10.1016/j.ijggc.2010.10.006. |
[37] |
张波, 庞栓林, 李治水, 等. 蒸汽减温减压过程中能级优化分析及建议 [J]. 天津化工, 2015, 29(5): 40-43. DOI: 10.3969/j.issn.1008-1267.2015.05.014.
ZHANG B, PANG S L, LI Z S, et al. Analysis and suggestions on energy level optimization in the process of steam desuperheating and decompression [J]. Tianjin chemical industry, 2015, 29(5): 40-43. DOI: 10.3969/j.issn.1008-1267.2015.05.014. |
[38] |
闫天一. 钢铁企业蒸汽系统(火用)优化及余热回收利用的研究 [D]. 沈阳: 东北大学, 2022. DOI: 10.27007/d.cnki.gdbeu.2022.001951.
YAN T Y. Study on exergy optimization and waste heat recovery of steam system in steel enterprise [D]. Shenyang: Northeastern University, 2022. DOI: 10.27007/d.cnki.gdbeu.2022.001951. |
[39] |
陈海生, 贾明飞. 蒸汽减温减压过程㶲损失与余压发电 [J]. 煤气与热力, 2005, 25(12): 47-49. DOI: 10.3969/j.issn.1000-4416.2005.12.015.
CHEN H S, JIA M F. Steam exergy loss and residual pressure power generation in process of temperature and pressure reduction [J]. Gas & heat, 2005, 25(12): 47-49. DOI: 10.3969/j.issn.1000-4416.2005.12.015. |