[1] |
黄俊. 海上风电基础特点及中国海域的适用性分析 [J]. 风能, 2020(2): 36-40. DOI: 10.3969/j.issn.1674-9219.2020.02.013.
HUANG J. Basic characteristics of offshore wind power and applicability analysis of China's sea area [J]. Wind energy, 2020(2): 36-40. DOI: 10.3969/j.issn.1674-9219.2020.02.013. |
[2] |
张强, 葛畅, 沈晓雷, 等. 竹根沙海域单桩基础竖向承载力特性数值模拟研究 [J]. 南方能源建设, 2021, 8(3): 44-50. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.006.
ZHANG Q, GE C, SHEN X L, et al. Numerical simulation research on the vertical bearing capacity of the single pile foundation in Zhugensha sea area [J]. Southern energy construction, 2021, 8(3): 44-50. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.006. |
[3] |
曾雨欣, 施伟, 张礼贤, 等. 10 MW大型单桩式海上风机桩土作用研究 [J]. 南方能源建设, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001.
ZENG Y X, SHI W, ZHANG L X, et al. Research on pile-soil interaction of 10 MW large monopile offshore wind turbine [J]. Southern energy construction, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001. |
[4] |
李聪, 刘东华, 王洪庆. 海上风机单桩基础桩形影响因素分析 [J]. 南方能源建设, 2019, 6(4): 93-100. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.015.
LI C, LIU D H, WANG H Q. Configurational influence factor analysis of offshore wind turbine monopile foundation [J]. Southern energy construction, 2019, 6(4): 93-100. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.015. |
[5] |
毕明君. 海上风机单桩基础选型设计方法 [J]. 南方能源建设, 2017, 4(增刊1): 56-61,72. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.011.
BI M J. Design flow of monopile foundation for offshore wind turbine [J]. Southern energy construction, 2017, 4(Suppl. 1): 56-61,72. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.011. |
[6] |
马兆荣, 刘晋超, 元国凯. 珠海桂山海上风电场风电机组基础设计 [J]. 南方能源建设, 2015, 2(3): 72-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.014.
MA Z R, LIU J C, YUAN G K. Design of wind turbine supporting structure in Zhuhai Guishan offshore wind farm [J]. Southern energy construction, 2015, 2(3): 72-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.014. |
[7] |
徐荣彬, 元国凯, 刘晋超, 等. 海上风机导管架基础灌浆连接段受力分析 [J]. 南方能源建设, 2015, 2(3): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.016.
XU R B, YUAN G K, LIU J C, et al. Analysis of grouted connection in offshore wind turbine jacket foundation [J]. Southern energy construction, 2015, 2(3): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.016. |
[8] |
明小燕. 海上风机三脚架基础结构分析 [D]. 大连: 大连理工大学, 2013.
MING X Y. Analysis of tripod support structure of offshore wind turbine [D]. Dalian: Dalian University of Technology, 2013. |
[9] |
李炜, 张敏, 刘振亚, 等. 三脚架式海上风电基础结构基频敏感性研究 [J]. 太阳能学报, 2015, 36(1): 90-95. DOI: 10.3969/j.issn.0254-0096.2015.01.014.
LI W, ZHANG M, LIU Z Y, et al. Fundamental structural frequency analysis for tripod-type offshore wind turbine [J]. Journal of solar energy, 2015, 36(1): 90-95. DOI: 10.3969/j.issn.0254-0096.2015.01.014. |
[10] |
沈晓雷, 陈洪飞, 王欣怡. 海上风电高桩承台基础承载特性数值模拟研究 [J]. 水力发电, 2021, 47(12): 72-75. DOI: 10.3969/j.issn.0559-9342.2021.12.016.
SHEN X L, CHEN H F, WANG X Y. Numerical simulation on the bearing characteristics of the high-pile cap foundation for offshore wind power [J]. Water power, 2021, 47(12): 72-75. DOI: 10.3969/j.issn.0559-9342.2021.12.016. |
[11] |
彭潜, 张晗, 徐兵. 海上风电高桩承台风机基础安全监测技术 [J]. 水电与新能源, 2022, 36(5): 65-71. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.05.017.
PENG Q, ZHANG H, XU B. Safety monitoring technology of high-pile cap wind turbine foundation in offshore wind farm [J]. Hydropower and new energy, 2022, 36(5): 65-71. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.05.017. |
[12] |
陈皓勇, 席松涛. 海上风电成本构成及价格机制 [J]. 风能, 2022(1): 12-15. DOI: 10.3969/j.issn.1674-9219.2022.01.012.
CHEN H Y, XI S T. Cost composition and price mechanism of offshore wind power [J]. Wind energy, 2022(1): 12-15. DOI: 10.3969/j.issn.1674-9219.2022.01.012. |
[13] |
金长营. 海上风电项目全寿命周期的成本构成及其敏感性分析 [J]. 太阳能, 2022(3): 10-16. DOI: 10.19911/j.1003-0417.tyn20201230.01.
JIN C Y. Cost composition of whole life cycle and sensitivity analysis of offshore wind power project [J]. Solar energy, 2022(3): 10-16. DOI: 10.19911/j.1003-0417.tyn20201230.01. |
[14] |
吴艳崇. 海上风机超大直径单桩基础承载性能及桩身优化设计研究 [D]. 青岛: 山东科技大学, 2020. DOI: 10.27275/d.cnki.gsdku.2020.001470.
WU Y C. Study on bearing capacity and optimal design of super large diameter single pile foundation for offshore fan [D]. Qingdao: Shandong University of Science and Technology, 2020. DOI: 10.27275/d.cnki.gsdku.2020.001470. |
[15] |
周昳鸣, 闫姝, 姚中原. 海上风机塔架和单桩一体化试验设计方法 [J]. 南方能源建设, 2021, 8(4): 16-25. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.003.
ZHOU Y M, YAN S, YAO Z Y. Design of experiment for integrated offshore windturbine tower and monopile [J]. Southern energy construction, 2021, 8(4): 16-25. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.003. |
[16] |
马宁. 海上风电工程基础施工效率优化措施 [J]. 中国设备工程, 2020(6): 246-248. DOI: 10.3969/j.issn.1671-0711.2020.06.147.
MA N. Measures to optimize the efficiency of offshore wind power engineering foundation construction [J]. China equipment engineering, 2020(6): 246-248. DOI: 10.3969/j.issn.1671-0711.2020.06.147. |
[17] |
顾明. 某近海风电场风机基础结构选型分析 [J]. 规划与设计, 2018(21): 77-78. DOI: 10.3969/j.issn.1673-0038.2018.21.060.
GU M. Analysis of wind turbine foundation structure selection for an offshore wind farm [J]. Planning and design, 2018(21): 77-78. DOI: 10.3969/j.issn.1673-0038.2018.21.060. |
[18] |
刘爽, 束加庆, 吴兆和, 等. 波流作用下海上风机导管架基础静力分析 [J]. 工程技术研究, 2021, 6(14): 135-136. DOI: 10.19537/j.cnki.2096-2789.2021.14.062.
LIU S, SHU J Q, WU Z H, et al. Static analysis of offshore wind turbine jacket foundation under wave and current action [J]. Engineering equipment and materials, 2021, 6(14): 135-136. DOI: 10.19537/j.cnki.2096-2789.2021.14.062. |
[19] |
李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望 [J]. 中国海上油气, 2022, 34(5): 229-236. DOI: 10.11935/j.issn.1673-1506.2022.05.026.
LI Z C, HU P, MA J X, et al. Analysis and prospect of offshore wind power development in China [J]. China offshore oil and gas, 2022, 34(5): 229-236. DOI: 10.11935/j.issn.1673-1506.2022.05.026. |
[20] |
侯法垒. 海洋风电导管架结构对桩径变化位置的敏感性分析研究 [J]. 工程与试验, 2019, 59(4): 21-23. DOI: 10.3969/j.issn.1674-3407.2019.04.010.
HOU F L. Sensitivity analysis of offshore wind power jacket structure to changing position of pile diameter [J]. Engineering and test, 2019, 59(4): 21-23. DOI: 10.3969/j.issn.1674-3407.2019.04.010. |
[21] |
郭政. 宁德霞浦某海上风电场基础选型研究 [J]. 能源与环境, 2022(2): 16-19. DOI: 10.3969/j.issn.1672-9064.2022.02.005.
GUO Z. Research on foundation selection of an offshore wind farm in Xiapu, Ningde [J]. Energy and environment, 2022(2): 16-19. DOI: 10.3969/j.issn.1672-9064.2022.02.005. |
[22] |
国家能源局. 海上风电场工程风电机组基础设计规范: NB/T 10105—2018 [S]. 北京: 中国水利水电出版社, 2019.
National Energy Administration. Code for design of wind turbine foundations for offshore wind power projects: NB/T 10105—2018 [S]. Beijing: China Water & Power Press, 2019. |
[23] |
中华人民共和国交通运输部. 码头结构设计规范: JTS 167—2018 [S]. 北京: 人民交通出版社股份有限公司, 2018.
Ministry of Transport of the People's Republic of China. Design code for wharf structures: JTS 167—2018 [S]. Beijing: China Communications Press, 2018. |
[24] |
中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017. |
[25] |
DNV GL AS. Support structures for wind turbines: DNVGL—ST—0126 [S]. [S. l.]: DNV GL AS, 2018. |