[1] 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源 [J]. 天然气工业, 2016, 36(1): 1-10. DOI:  10.3787/j.issn.1000-0976.2016.01.001.

ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: From a fossil energy era to a new energy era [J]. Natural Gas Industry, 2016, 36(1): 1-10. DOI:  10.3787/j.issn.1000-0976.2016.01.001.
[2]

SYMONDS R T, LU D Y, HUGHES R W, et al. CO2 capture from simulated syngas via cyclic carbonation/calcination for a naturally occurring limestone: pilot-plant testing [J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8431-8440. DOI:  10.1021/ie900645x.
[3]

ROMANO M C. Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas [J]. Chemical Engineering Science, 2012, 69(1): 257-269. DOI:  10.1016/j.ces.2011.10.041.
[4]

BODANSKY D. The Copenhagen climate change conference: a postmortem [J]. American Journal of International Law, 2010, 104(2): 230-240. DOI:  10.5305/amerjintelaw.104.2.0230.
[5]

RHODES C J. The 2015 Paris climate change conference: COP21 [J]. Science Progress, 2016, 99(1): 97-104. DOI:  10.3184/003685016X14528569315192.
[6]

ROSNER F, CHEN Q, RAO A, et al. Thermo-economic analyses of isothermal water gas shift reactor integrations into IGCC power plant [J]. Applied Energy, 2020, 277: 115500. DOI:  10.1016/j.apenergy.2020.115500.
[7]

WHITE D. Buggenum-a step towards commercialisation of IGCC [J]. Modern Power Systems, 1998, 18(6): 53-55.
[8]

WU R S. Coal-fired power plant in the future-Chinaˈs GreenGen Project [J]. Electric Power, 2007, 40(3): 6-8.
[9]

HOUSLEY C. Edwardsport IGCC plant progressing: duke [J]. Platts Megawatt Daily, 2015(504): 14-15.
[10]

ONO K, UMEMOTO S, KIDOGUCHI K, et al. Operating condition of Nakoso power station No. 10 (IGCC) [C]// The Japan Society of Mechanical Engineers. The Proceedings of Mechanical Engineering Congress, Japan, Fukuoka, Japan, September 11-14, 2016. Tokyo: The Japan Society of Mechanical Engineers, 2016: S0810102. DOI: 10.1299/jsmemecj.2016.S0810102.
[11]

XIA C Y, YE B, JIANG J J, et al. Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: implications from the GreenGen project [J]. Journal of Cleaner Production, 2020, 271: 122615. DOI:  10.1016/j.jclepro.2020.122615.
[12]

GUAN X F, HEWITT A, PENG W W, et al. Particulate control devices in Kemper County IGCC Project [J]. Energy Reports, 2019, 5: 969-978. DOI:  10.1016/j.egyr.2019.07.009.
[13]

KIDOGUCHI K, TAKAHASHI M, ONO K, et al. ICOPE-15-1023 nakoso 250 MW air-blown IGCC plant: operating results update [C]//The Proceedings of the International Conference on Power Engineering (ICOPE). Yokohama: The Japan Society of Mechanical Engineers, 2015. DOI: 10.1299/jsmeicope.2015.12._ICOPE-15-_13.
[14]

JAMNANI M B, KARDGAR A. Energy-exergy performance assessment with optimization guidance for the components of the 396-MW combined-cycle power plant [J]. Energy Science & Engineering, 2020, 8(10): 3561-3574. DOI:  10.1002/ese3.764.
[15] 李扬. 燃气–蒸汽联合循环底循环系统参数匹配及分析 [D]. 大连: 大连理工大学, 2015.

LI Y. Parameters matching and analysis of bottom cycle system in gas-steam combined cycle [D]. Dalian: Dalian University of Technology, 2015.
[16]

GANJEHKAVIRI A, JAAFAR M N M, HOSSEINI S E. Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant [J]. Energy Conversion and Management, 2015, 89: 231-243. DOI:  10.1016/j.enconman.2014.09.042.
[17]

NAJJAR Y S H, ALALUL O F A, ABU-SHAMLEH A. Steam turbine bottoming cycle deterioration under different load conditions [J]. Thermal Science and Engineering Progress, 2020, 20: 100733. DOI:  10.1016/j.tsep.2020.100733.
[18]

ALIYU M, ALQUDAIHI A B, SAID S A M, et al. Energy, exergy and parametric analysis of a combined cycle power plant [J]. Thermal Science and Engineering Progress, 2020, 15: 100450. DOI:  10.1016/j.tsep.2019.100450.
[19]

WANG T. The gas and steam turbines and combined cycle in IGCC systems [M]//WANG T, STIEGEL G. Integrated Gasification Combined Cycle (IGCC) Technologies. Amsterdam: Elsevier, 2017: 497-640. doi:  10.1016/B978-0-08-100167-7.00028-7.
[20] 董真, 张立建, 陈倪. 我国首台IGCC的100 MW等级单缸三压汽轮机 [J]. 热力透平, 2012, 41(4): 261-263. DOI:  10.3969/j.issn.1672-5549.2012.04.004.

DONG Z, ZHANG L J, CHEN N. Introduction of the First IGCC 100 MW steam turbine with single casing and triple pressure in China [J]. Thermal Turbine, 2012, 41(4): 261-263. DOI:  10.3969/j.issn.1672-5549.2012.04.004.