[1] SARTORI E, AGOSTINI M, BARBISAN M, et al. First operations with caesium of the negative ion source SPIDER [J]. Nuclear fusion, 2022, 62(8): 086022. DOI:  10.1088/1741-4326/ac715e.
[2] IKEDA Y, UMEDA N, AKINO N, et al. Present status of the negative ion based NBI system for long pulse operation on JT-60U [J]. Nuclear fusion, 2006, 46(6): S211-S219. DOI:  10.1088/0029-5515/46/6/S02.
[3] 王腾. 超导磁体技术与磁约束核聚变 [J]. 南方能源建设, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.

WANG T. Superconducting magnet technology and magnetically confined fusion [J]. Southern energy construction, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.
[4]

FRANZEN P, FANTZ U, WÜNDERLICH D, et al. Progress of the ELISE test facility: results of caesium operation with low RF power [J]. Nuclear fusion, 2015, 55(5): 053005. DOI:  10.1088/0029-5515/55/5/053005.
[5]

IKEDA K, GENG S F, TSUMORI K, et al. Recent studies of hydrogen negative ion source and beam production for NBI in large helical device [J]. Plasma and fusion research, 2016, 11: 2505038. DOI:  10.1585/pfr.11.2505038.
[6]

KURIYAMA M, AOYAGI T, AKINO N, et al. Development of negative-ion based NBI system for JT-60 [J]. Journal of the atomic energy society of Japan, 1996, 38(11): 912-922. DOI:  10.3327/jaesj.38.912.
[7] 姜韶风, 周才品, 王德泰, 等. HL-1M中性束注入系统研制及中性束加热初步实验 [J]. 核聚变与等离子体物理, 1999, 19(4): 213-218. DOI:  10.16568/j.0254-6086.1999.04.005.

JIANG S F, ZHOU C P, WANG D T, et al. Development of neutral beam injection system and preliminary heating experiments on the HL-1M tokamak [J]. Nuclear fusion and plasma physics, 1999, 19(4): 213-218. DOI:  10.16568/j.0254-6086.1999.04.005.
[8] 雷光玖, 姜韶风, 钟光武, 等. HL-2A中性束大功率离子源的研制 [J]. 中国物理C: 英文版, 2008, 32(增刊1): 271-273.

LEI G J, JIANG S F, ZHONG G W, et al. Ion source for HL-2A nuetral beam injection [J]. Chinese physics C, 2008, 32(Suppl.1): 271-273.
[9] 邹桂清, 钟光武, 雷光玖, 等. 大功率多磁极会切场离子源的弧放电特性分析 [J]. 中国物理C: 英文版, 2008, 32(增刊1): 283-285.

ZOU G Q, ZHONG G W, LEI G J, et al. Arc discharge performance analysis for a high power bucket ion source [J]. Chinese physics C, 2008, 32(Suppl.1): 283-285.
[10] 余珮炫, 魏会领, 邹桂清, 等. HL-2A装置NBI加热束线束光学特性 [J]. 强激光与粒子束, 2016, 28(5): 054001. DOI: 10.11884/HPLPB2016 28.054001.

YU P X, WEI H L, ZOU G Q, et al. Beam optic characteristics of neutral beam heating line on HL-2A [J]. High power laser and particle beams, 2016, 28(5): 054001. DOI: 10.11884/HPLPB2016 28.054001.
[11] 魏会领, 曹建勇, 余珮炫, 等. HL-2M装置5 MW中性束加热束线离子源放电室研制 [J]. 强激光与粒子束, 2020, 32(4): 046001. DOI:  10.11884/HPLPB202032.190275.

WEI H L, CAO J Y, YU P X, et al. Development of ion source discharge chamber for the 5 MW neutral beam heating line on HL-2M device [J]. High power laser and particle beams, 2020, 32(4): 046001. DOI:  10.11884/HPLPB202032.190275.
[12] 万银祥, 魏会领, 耿少飞, 等. 中性束离子源实验平台80 kV/50 A/20 ms高压电源设计分析与优化 [J]. 核聚变与等离子体物理, 2023, 43(4): 373-379. DOI: 10.16568/j.0254-6086.2023 04001.

WAN Y X, WEI H L, GENG S F, et al. Design analysis and optimization of 80 kV/50 A/20 ms high voltage power supply for neutral beam ion source experimental platform [J]. Nuclear fusion and plasma physics, 2023, 43(4): 373-379. DOI: 10.16568/j.0254-6086.2023 04001.
[13] 张贤明. 射频负离子源实验研究原型I(THOR I)工程设计和制造技术要求 [R]. 成都: 核工业西南物理研究院, 2018.

ZHANG X M. Engineering design and manufacturing technical requirements for prototype I (THOR I) of RF negative ion source experimental research [R]. Chengdu: Southwestern Institute of Physics, 2018.
[14] 于祺, 李明, 赵淼, 等. 射频负离子源200 kV高压平台磁缓冲器系统中磁芯的性能测试和分析 [J]. 核聚变与等离子体物理, 2023, 43(3): 263-269. DOI:  10.16568/j.0254-6086.202303003.

YU Q, LI M, ZHAO M, et al. Performance test and analysis of the magnetic core in a core snubber system for 200 kV high voltage deck of radio frequency negative ion source [J]. Nuclear fusion and plasma physics, 2023, 43(3): 263-269. DOI:  10.16568/j.0254-6086.202303003.
[15] 罗怀宇, 曹建勇, 耿少飞, 等. HL-2M中性束负离子试验源磁场位形及引出结构模拟分析 [J]. 核聚变与等离子体物理, 2018, 38(3): 281-286. DOI:  10.16568/j.0254-6086.201803006.

LUO H Y, CAO J Y, GENG S F, et al. Simulation and analysis of magnetic field configuration and extraction structure of the test experimental negative ion source for HL-2M [J]. Nuclear fusion and plasma physics, 2018, 38(3): 281-286. DOI:  10.16568/j.0254-6086.201803006.
[16]

GENG S F, WEI H L, ZHOU B W, et al. First beam extraction experiment from a prototype filament-arc driven negative ion source [J]. Fusion engineering and design, 168: 112671. DOI:  10.1016/j.fusengdes.2021.112671.
[17]

RIZZOLO A, TOLLIN M, BROMBIN M, et al. Final design of the diagnostic calorimeter for the negative ion source SPIDER [J]. Fusion engineering and design, 2017, 123: 768-772. DOI:  10.1016/j.fusengdes.2017.05.003.
[18]

NOCENTINI R, BONOMO F, FANTZ U, et al. A new tungsten wire calorimeter for the negative ion source testbed BATMAN upgrade [J]. Fusion engineering and design, 2019, 146: 433-436. DOI:  10.1016/j.fusengdes.2018.12.085.
[19] 曹建勇. 孔形引出电极的4离子源NBI注入器计算程序 [R]. 成都: 核工业西南物理研究院, 2009.

CAO J Y. The calculation code for NBI injector of 4 ion sources with circle apertures electrode [R]. Chengdu: Southwestern Institute of Physics, 2009.
[20] 曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展 [J]. 强激光与粒子束, 2018, 30(10): 106001. DOI:  10.11884/HPLPB201830.180051.

CAO J Y, WEI H L, LU H, et al. Latest progress of development of the neutral beam injection heating system on HL-2M tokamak [J]. High power laser and particle beams, 2018, 30(10): 106001. DOI:  10.11884/HPLPB201830.180051.
[21] 曹建勇, 魏会领, 阚存东, 等. 一种基于磁流体真空密封的量热靶水路及靶板张合结构: 201911271767.7 [P]. 2021-06-18.

CAO J Y, WEI H L, KAN C D, et al. A calorimetric target waterway and target plate tensioning structure based on magnetic fluid vacuum sealing: 201911271767.7 [P]. 2021-06-18.