[1] 罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.001.

LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI:  10.16516/j.gedi.issn2095-8676.2023.06.001.
[2]

SAEIDI S, NAJARI S, HESSEL V, et al. Recent advances in CO2 hydrogenation to value-added products: current challenges and future directions [J]. Progress in energy and combustion science, 2021, 85: 100905. DOI:  10.1016/j.pecs.2021.100905.
[3]

YANG Y J, ZHANG J C, LIU J, et al. Nickel nanoparticles encapsulated in SSZ-13 cage for highly efficient CO2 hydrogenation [J]. Energy & fuels, 2021, 35(16): 13240-13248. DOI:  10.1021/acs.energyfuels.1c01881.
[4]

HUA Z X, YANG Y J, LIU J. Direct hydrogenation of carbon dioxide to value-added aromatics [J]. Coordination chemistry reviews, 2023, 478: 214982. DOI:  10.1016/j.ccr.2022.214982.
[5]

KARAKAYA C, PARKS J. Thermochemical processes for CO2 hydrogenation to fuels and chemicals: challenges and opportunities [J]. Applications in energy and combustion science, 2023, 15: 100171. DOI:  10.1016/j.jaecs.2023.100171.
[6]

JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical reviews, 2020, 120(15): 7984-8034. DOI:  10.1021/acs.chemrev.9b00723.
[7]

JIANG Y J, WANG K Z, WANG Y, et al. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified fischer-tropsch pathway [J]. Journal of CO2 utilization, 2023, 67: 102321. DOI:  10.1016/j.jcou.2022.102321.
[8]

GAO X H, ATCHIMARUNGSRI T, MA Q X, et al. Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design [J]. EnergyChem, 2020, 2(4): 100038. DOI:  10.1016/j.enchem.2020.100038.
[9]

FRANCO F, RETTENMAIER C, JEON H S, et al. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials [J]. Chemical society reviews, 2020, 49(19): 6884-6946. DOI: 10.1039/D0CS00 835D.
[10]

ARTZ J, MÜLLER T E, THENERT K, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment [J]. Chemical reviews, 2018, 118(2): 434-504. DOI:  10.1021/acs.chemrev.7b00435.
[11]

QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J]. Chemical society reviews, 2014, 43(2): 631-675. DOI:  10.1039/C3CS60323G.
[12]

YANG Z Y, QI Y, WANG F L, et al. State-of-the-art advancements in photo-assisted CO2 hydrogenation: recent progress in catalyst development and reaction mechanisms [J]. Journal of materials chemistry A, 2020, 8(47): 24868-24894. DOI:  10.1039/D0TA08781E.
[13]

YANG S Y, ZHANG L, WANG Z J. Advances in the preparation of light alkene from carbon dioxide by hydrogenation [J]. Fuel, 2022, 324: 124503. DOI:  10.1016/j.fuel.2022.124503.
[14]

ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical society reviews, 2020, 49(5): 1385-1413. DOI:  10.1039/C9CS00614A.
[15]

ASHOK J, PATI S, HONGMANOROM P, et al. A review of recent catalyst advances in CO2 methanation processes [J]. Catalysis today, 2020, 356: 471-489. DOI:  10.1016/j.cattod.2020.07.023.
[16]

WEI J, YAO R W, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons [J]. Chemical society reviews, 2021, 50(19): 10764-10805. DOI:  10.1039/D1CS00260K.
[17]

BAILERA M, LISBONA P, ROMEO L M, et al. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2 [J]. Renewable and sustainable energy reviews, 2017, 69: 292-312. DOI:  10.1016/j.rser.2016.11.130.
[18]

WULF C, LINBEN J, ZAPP P. Review of power-to-gas projects in Europe [J]. Energy procedia, 2018, 155: 367-378. DOI:  10.1016/j.egypro.2018.11.041.
[19]

THEMA M, BAUER F, STERNER M. Power-to-gas: electrolysis and methanation status review [J]. Renewable and sustainable energy reviews, 2019, 112: 775-787. DOI:  10.1016/j.rser.2019.06.030.
[20] 郭嘉懿, 何育荣, 马晶晶, 等. 二氧化碳催化加氢制甲醇研究进展 [J]. 洁净煤技术, 2023, 29(4): 49-64. DOI:  10.13226/j.issn.1006-6772.RM22092601.

GUO J Y, HE Y R, MA J J, et al. Research progress on catalytic hydrogenation of carbon dioxide to methanol [J]. Clean coal technology, 2023, 29(4): 49-64. DOI:  10.13226/j.issn.1006-6772.RM22092601.
[21] 云梁, 李国峰. CO2催化加氢制甲醇技术研究进展 [J]. 工业催化, 2022, 30(4): 13-17. DOI:  10.3969/j.issn.1008-1143.2022.04.003.

YUN L, LI G F. Research progress on catalytic hydrogenation of CO2 to methanol [J]. Industrial catalysis, 2022, 30(4): 13-17. DOI:  10.3969/j.issn.1008-1143.2022.04.003.
[22]

WANG D, XIE Z H, POROSOFF M D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics [J]. Chem, 2021, 7(9): 2277-2311. DOI:  10.1016/j.chempr.2021.02.024.
[23]

MARQUES MOTA F, KIM D H. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability [J]. Chemical society reviews, 2019, 48(1): 205-259. DOI:  10.1039/C8CS00527C.
[24]

POROSOFF M D, YAN B H, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities [J]. Energy & environmental science, 2016, 9(1): 62-73. DOI:  10.1039/C5EE02657A.