[1] VERMEER L J, SØRENSEN J N, CRESPO A. Wind turbine wake aerodynamics [J]. Progress in aerospace sciences, 2003, 39(6/7): 467-510. DOI:  10.1016/s0376-0421(03)00078-2.
[2] 罗莎莎, 郭经韬, 蔡颖倩, 等. 面向碳中和的广东省电源结构转型分析 [J]. 南方能源建设, 2024, 11(4): 102-110. DOI:  10.16516/j.ceec.2024.4.10.

LUO S S, GUO J T, CAI Y Q, et al. Analysis on power supply structure transformation towards carbon neutrality in Guangdong [J]. Southern energy construction, 2024, 11(4): 102-110. DOI:  10.16516/j.ceec.2024.4.10.
[3]

ROGA S, BARDHAN S, KUMAR Y, et al. Recent technology and challenges of wind energy generation: a review [J]. Sustainable energy technologies and assessments, 2022, 52: 102239. DOI:  10.1016/j.seta.2022.102239.
[4] 李胜, 葛文澎, 吴嘉诚, 等. 风力机组尾流模型适用性评价 [J]. 南方能源建设, 2024, 11(1): 42-53. DOI:  10.16516/j.ceec.2024.1.05.

LI S, GE W P, WU J C, et al. Applicability evaluation of wind turbine wake models [J]. Southern energy construction, 2024, 11(1): 42-53. DOI:  10.16516/j.ceec.2024.1.05.
[5] 李东东, 张先明, 姚寅, 等. 计及转子动能损失和风速相关性的风电场有效惯量估计 [J]. 电力系统保护与控制, 2023, 51(22): 63-73. DOI:  10.19783/j.cnki.pspc.230187.

LI D D, ZHANG X M, YAO Y, et al. Estimation of effective inertia of a wind farm considering rotor kinetic energy loss and wind velocity correlation [J]. Power system protection and control, 2023, 51(22): 63-73. DOI:  10.19783/j.cnki.pspc.230187.
[6]

ALFREDSSON P H, DAHLBERG J A. Measurements of wake interaction effects on the power output from small wind turbine models [R]. Stockholm: FFA, 1981.
[7]

VERMEULEN P E J, BUILTJES P J H. Turbulence measurements in simulated wind-turbine clusters [R]. The Hague, Netherlands: Netherlands Organization for Applied Scientific Research, 1982.
[8]

VERMEULEN P E J. An experimental analysis of wind turbine wakes [C]//British Hydromechanics Research Association (BHRA), Proceedings of the 3rd International Symposium on Wind Energy Systems. Lyngby, Denmark: BHRA, 1980: 431-450.
[9]

KROGSTAD P Å, ERIKSEN P E. "Blind test" calculations of the performance and wake development for a model wind turbine [J]. Renewable energy, 2013, 50: 325-333. DOI:  10.1016/j.renene.2012.06.044.
[10]

BARTL J, SÆTRAN L. Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions [J]. Wind energy science, 2017, 2(1): 55-76. DOI:  10.5194/wes-2-55-2017.
[11]

PIERELLA F, KROGSTAD P Å, SÆTRAN L. Blind Test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds [J]. Renewable energy, 2014, 70: 62-77. DOI:  10.1016/j.renene.2014.03.034.
[12]

KROGSTAD P Å, SÆTRAN L, ADARAMOLA M S. "Blind Test 3" calculations of the performance and wake development behind two in-line and offset model wind turbines [J]. Journal of fluids and structures, 2015, 52: 65-80. DOI:  10.1016/j.jfluidstructs.2014.10.002.
[13] 郭静婷. 风电场中风力机间相互影响的研究 [D]. 呼和浩特: 内蒙古工业大学, 2010.

GUO J T. Research on optimization collocation in wind farm [D]. Hohhot: Inner Mongolia University of Technology, 2010.
[14]

WHALE J, ANDERSON C G, BAREISS R, et al. An experimental and numerical study of the vortex structure in the wake of a wind turbine [J]. Journal of wind engineering and industrial aerodynamics, 2000, 84(1): 1-21. DOI:  10.1016/S0167-6105(98)00201-3.
[15] 郭茂丰, 张立茹, 李得银, 等. 偏航状态下水平轴风力机尾迹偏移及湍流特征分析 [J]. 排灌机械工程学报, 2020, 38(7): 702-707. DOI:  10.3969/j.issn.1674-8530.18.0273.

GUO M F, ZHANG L R, LI D Y, et al. Analysis on wake deviation and turbulence characteristics of horizontal-axis wind turbine under yawed condition [J]. Journal of drainage and irrigation machinery engineering, 2020, 38(7): 702-707. DOI:  10.3969/j.issn.1674-8530.18.0273.
[16]

FLETCHER T M, BROWN R E. Simulation of wind turbine wake interaction using the vorticity transport model [J]. Wind energy, 2010, 13(7): 587-602. DOI:  10.1002/WE.379.
[17]

ZHANG W G, WANG Y Y, SHEN Y Z, et al. CFD studies of wake characteristics and power capture of wind turbines with trailing edge flaps [J]. IEEE access, 2020, 8: 7349-7361. DOI:  10.1109/ACCESS.2020.2964620.
[18]

LIU Y C, XIAO Q, INCECILK A, et al. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines [J]. Renewable energy, 2017(112): 280-301. DOI:  10.1016/j.renene.2017.04.052.
[19]

JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development [R]. Golden: National Renewable Energy Lab. (NREL), 2009. DOI:  10.2172/947422.
[20]

WEN B R, TIAN X L, DONG X J, et al. Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine [J]. Energy, 2017, 141: 2054-2068. DOI:  10.1016/j.energy.2017.11.090.
[21]

MICALLEF D, SANT T. Loading effects on floating offshore horizontal axis wind turbines in surge motion [J]. Renewable energy, 2015, 83: 737-748. DOI:  10.1016/j.renene.2015.05.016.
[22]

TU Y, ZHANG K, HAN Z L, et al. Aerodynamic characterization of two tandem wind turbines under yaw misalignment control using actuator line model [J]. Ocean engineering, 2023, 281: 114992. DOI:  10.1016/j.oceaneng.2023.114992.
[23]

NAKHCHI M E, WIN NAUNG S, RAHMATI M. A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production [J]. Energy conversion and management, 2022, 260: 115575. DOI:  10.1016/j.enconman.2022.115575.
[24]

MIAO W P, LI C, PAVESI G, et al. Investigation of wake characteristics of a yawed HAWT and its impacts on the inline downstream wind turbine using unsteady CFD [J]. Journal of wind engineering and industrial aerodynamics, 2017, 168: 60-71. DOI:  10.1016/j.jweia.2017.05.002.