Advanced Search
CHENG Yunrui, ZHENG Puyan, YANG Haisen, et al. Design and performance study of SOFC-"GT+ST" system based on hydrogen fuel [J]. Southern energy construction, 2025, 12(3): 124-132. DOI: 10.16516/j.ceec.2024-044
Citation: CHENG Yunrui, ZHENG Puyan, YANG Haisen, et al. Design and performance study of SOFC-"GT+ST" system based on hydrogen fuel [J]. Southern energy construction, 2025, 12(3): 124-132. DOI: 10.16516/j.ceec.2024-044

Design and Performance Study of SOFC-"GT+ST" System Based on Hydrogen Fuel

More Information
  • Received Date: February 20, 2024
  • Revised Date: March 28, 2024
  • Accepted Date: April 18, 2024
  • Available Online: November 27, 2024
  • Published Date: November 28, 2024
  • Objective 

    For the oxygen ion conductive solid fuel cell fueled by hydrogen, the paper proposed a SOFC-"GT+ST" system with the cathode and anode of the fuel cell entering the gas turbine and steam turbine respectively, and analyzed the impact of different parameters on system efficiency, providing reference opinions for hydrogen fuel cell and turbine coupling systems.

    Method 

    A system model was established using the software Ebsilon. The model was compared with the SOFC-GT system under the given parameters. Additionally, the study investigated the effects of fuel utilization, compressor pressure ratio, air flow and SOFC inlet working fluid temperature on the total power generation efficiency of SOFC-"GT+ST" system.

    Result 

    The results show that compared with the SOFC-GT system, the total power generation of the SOFC-"GT+ST" system increases to 73.3 MW, representing a 5.74% improvement over the original system, with a power generation efficiency of 60.13%. The fuel utilization of the fuel cell, the compressor pressure ratio, the cell inlet temperature and the air flow rate all affect the system's total power generation efficiency. Among these factors, there is an optimal value for fuel utilization and a reasonable range for the air flow rate. Additionally, higher cell inlet temperature and compressor pressure ratio lead to higher power generation efficiency of the system.

    Conclusion 

    Under the structure and parameters defined in this study, the optimal value of fuel utilization of fuel cell is 0.85, and the air flow value should be between 35 and 39 kg/s. The improved system can effectively enhance the total power generation efficiency of SOFC and turbine combined power generation system. The results of this study provide a reference for the selection of system parameters.

  • [1]
    江华. 未来光伏发电技术的发展趋势预测 [J]. 太阳能, 2022(1): 5-13. DOI: 10.19911/j.1003-0417.tyn20210727.a.

    JIANG H. Forecast of development trend of PV power generation technologies in the future [J]. Solar energy, 2022(1): 5-13. DOI: 10.19911/j.1003-0417.tyn20210727.a.
    [2]
    王立强, 王琪. 风光储系统参与电网调频与消纳技术研究 [J]. 内蒙古电力技术, 2024, 42(1): 9-14. DOI: 10.19929/j.cnki.nmgdljs.2024.0002.

    WANG L Q, WANG Q. Research on participation of wind- solar- storage system in power grid frequency regulation and consumption technology [J]. Inner Mongolia electric power, 2024, 42(1): 9-14. DOI: 10.19929/j.cnki.nmgdljs.2024.0002.
    [3]
    赵启新, 苏雅亨, 李雨佳, 等. 基于多智能体仿真的区域低碳电力系统发展形态及实现路径研究 [J]. 内蒙古电力技术, 2024, 42(5): 13-22. DOI: 10.19929/j.cnki.nmgdljs.2024.0062.

    ZHAO Q X, SU Y H, LI Y J, et al. Research on development form and implementation path of regional low-carbon power system based on multi-agent simulation [J]. Inner Mongolia electric power, 2024, 42(5): 13-22. DOI: 10.19929/j.cnki.nmgdljs.2024.0062.
    [4]
    许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望 [J]. 中国工程科学, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010.

    XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: application value, challenges, and prospects [J]. Strategic study of CAE, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010.
    [5]
    赵海岭, 王维庆, 李笑竹, 等. 发电侧多主体投资低碳综合微网氢储能的演化策略 [J]. 电力系统保护与控制, 2023, 51(22): 49-62. DOI: 10.19783/j.cnki.pspc.230320.

    ZHAO H L, WANG W Q, LI X Z, et al. Evolution strategy of low carbon integrated microgrid hydrogen energy storage with Multi-agents investment on the power generation side [J]. Power system protection and control, 2023, 51(22): 49-62. DOI: 10.19783/j.cnki.pspc.230320.
    [6]
    钟依庐, 刘为雄, 郑赟, 等. 风火储氢碳多能耦合打捆送出模式研究 [J]. 南方能源建设, 2023, 10(4): 122-130. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.012.

    ZHONG Y L, LIU W X, ZHENG Y, et al. Electricity transmission strategy research based on wind-coal-battery-hydrogen-CCUS multi energy coupling and bundling system [J]. Southern energy construction, 2023, 10(4): 122-130. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.012.
    [7]
    李建林, 梁策, 曾飞, 等. 基于级联式模糊控制的电氢耦合直流微网能量管理策略研究 [J]. 电力系统保护与控制, 2024, 52(18): 87-100. DOI: 10.19783/j.cnki.pspc.240142.

    LI J L, LIANG C, ZENG F, et al. An energy management strategy for an electricity-hydrogen coupled DC microgrid based on cascade fuzzy control [J]. Power system protection and control, 2024, 52(18): 87-100. DOI: 10.19783/j.cnki.pspc.240142.
    [8]
    瞿小广, 陈波, 杨兴林, 等. 光伏-氢燃料电池集成供电系统设计 [J]. 机械制造与自动化, 2022, 51(4): 184-187. DOI: 10.19344/j.cnki.issn1671-5276.2022.04.047.

    QU X G, CHEN B, YANG X L, et al. Design of integrated power supply system for photovoltaics-hydrogen fuel cells [J]. Machine building & automation, 2022, 51(4): 184-187. DOI: 10.19344/j.cnki.issn1671-5276.2022.04.047.
    [9]
    张杰, 宋科, 张瀚, 等. 车载供氢系统发展现状及展望 [J]. 发电技术, 2025, 46(1): 58-71. DOI: 10.12096/j.2096-4528.pgt.23168.

    ZHANG J, SONG K, ZHANG H, et al. Development status and prospects of onboard hydrogen supply systems [J]. Power generation technology, 2025, 46(1): 58-71. DOI: 10.12096/j.2096-4528.pgt.23168.
    [10]
    吴磊, 彭黎菊, 李爽, 等. 百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析 [J]. 发电技术, 2023, 44(3): 350-360. DOI: 10.12096/j.2096-4528.pgt.22078.

    WU L, PENG L J, LI S, et al. Simulation and analysis of steady state characteristics of hundred kilowatt proton exchange membrane fuel cell combined heat and power system based on hydrogen production from natural gas [J]. Power generation technology, 2023, 44(3): 350-360. DOI: 10.12096/j.2096-4528.pgt.22078.
    [11]
    马遵, 和鹏, 许珂玮, 等. 基于混沌博弈优化的固体氧化物燃料电池模型参数优化设计 [J]. 电力系统保护与控制, 2024, 52(6): 15-28. DOI: 10.19783/j.cnki.pspc.230635.

    MA Z, HE P, XU K W, et al. Optimal parameter design of models for SOFCs using chaos game optimization [J]. Power system protection and control, 2024, 52(6): 15-28. DOI: 10.19783/j.cnki.pspc.230635.
    [12]
    吴雨泽, 王宇旸, 范红途. 固体氧化物燃料电池(SOFC)系统的研究现状 [J]. 能源研究与利用, 2019(1): 40-46. DOI: 10.16404/j.cnki.issn1001-5523.2019.01.014.

    WU Y Z, WANG Y Y, FAN H T. Research status of solid oxide fuel cell (SOFC) systems [J]. Energy research & utilization, 2019(1): 40-46. DOI: 10.16404/j.cnki.issn1001-5523.2019.01.014.
    [13]
    闫国华, 闫红丽. 高温燃料电池-发动机混合发电/动力系统研究进展 [J]. 山东化工, 2021, 50(13): 52-53 DOI: 10.19319/j.cnki.issn.1008-021x.2021.13.022.

    YAN G H, YAN H L. Advance on high-temperature fuel cell and engine combined system for power generation [J]. Shandong chemical industry, 2021, 50(13): 52-53. DOI: 10.19319/j.cnki.issn.1008-021x.2021.13.022.
    [14]
    卢立宁, 李素芬, 沈胜强, 等. 固体氧化物燃料电池与燃气轮机联合发电系统模拟研究 [J]. 热能动力工程, 2004, 19(4): 358-362, 436-437. DOI: 10.3969/j.issn.1001-2060.2004.04.007.

    LU L N, LI S F, SHEN S Q, et al. Simulation study of a combined power generation system incorporating a solid-oxide fuel cell and a gas turbine [J]. Journal of engineering for thermal energy and power, 2004, 19(4): 358-362, 436-437. DOI: 10.3969/j.issn.1001-2060.2004.04.007.
    [15]
    段立强, 和彬彬, 杨勇平. SOFC/MGT顶层循环混合发电系统改进 [J]. 热能动力工程, 2010, 25(3): 344-349, 362.

    DUAN L Q, HE B B, YANG Y P. Improvement of a SOFC/MGT (solid oxide fuel cell/micro gas turbine) top-level cycle hybrid power generation system [J]. Journal of engineering for thermal energy and power, 2010, 25(3): 344-349, 362.
    [16]
    陈启梅, 翁一武, 翁史烈, 等. 燃料电池-燃气轮机混合发电系统性能研究 [J]. 中国电机工程学报, 2006, 26(4): 31-35. DOI: 10.3321/j.issn:0258-8013.2006.04.007.

    CHEN Q M, WENG Y W, WENG S L, et al. Performance analysis of a hybrid system based on a fuel cell and a gas turbine [J]. Proceedings of the CSEE, 2006, 26(4): 31-35. DOI: 10.3321/j.issn:0258-8013.2006.04.007.
    [17]
    岳秀艳, 韩吉田, 于泽庭, 等. 设置富氨蒸气回热器的固体氧化物燃料电池/燃气轮机/卡琳娜联合循环系统的热力性能分析 [J]. 中国电机工程学报, 2014, 34(26): 4483-4492. DOI: 10.13334/j.0258-8013.pcsee.2014.26.006.

    YUE X Y, HAN J T, YU Z T, et al. Thermodynamic analysis of SOFC/GT/KCS integrated power generation system with reheater of concentrated ammonia vapor [J]. Proceedings of the CSEE, 2014, 34(26): 4483-4492. DOI: 10.13334/j.0258-8013.pcsee.2014.26.006.
    [18]
    蒙青山, 孔令健, 张涛, 等. 基于SOFC/GT和跨临界CO2联合循环系统热力性能研究 [J]. 太阳能学报, 2017, 38(10): 2778-2784. DOI: 10.19912/j.0254-0096.2017.10.023.

    MENG Q S, KONG L J, ZHANG T, et al. Thermodynamic performance analysis of combined cycle system based on SOFC/GT and transcritical carbon dioxide [J]. Acta energiae solaris sinica, 2017, 38(10): 2778-2784. DOI: 10.19912/j.0254-0096.2017.10.023.
    [19]
    WANG J F, YAN Z Q, MA S L, et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell [J]. International journal of hydrogen energy, 2012, 37(3): 2535-2545. DOI: 10.1016/j.ijhydene.2011.10.079.
    [20]
    GANDIGLIO M, LANZINI A, LEONE P, et al. Thermoeconomic analysis of large solid oxide fuel cell plants: atmospheric vs. pressurized performance [J]. Energy, 2013, 55: 142-155. DOI: 10.1016/j.energy.2013.03.059.
    [21]
    杨智敏, 林比宏. 不可逆高温燃料电池的性能分析与参数优化 [J]. 电源技术, 2020, 44(10): 1443-1446, 1474. DOI: 10.3969/j.issn.1002-087X.2020.10.011.

    YANG Z M, LIN B H. Performance analyses and parametric design strategies of irreversible high temperature fuel cell [J]. Chinese journal of power sources, 2020, 44(10): 1443-1446, 1474. DOI: 10.3969/j.issn.1002-087X.2020.10.011.
    [22]
    梁前超, 乔润鹏, 何俊能, 等. 固体氧化物燃料电池建模仿真与性能研究 [J]. 海军工程大学学报, 2021, 33(6): 77-81, 87. DOI: 10.7495/j.issn.1009-3486.2021.06.013.

    LIANG Q C, QIAO R P, HE J N, et al. Modeling simulation and performance research of solid oxide fuel cell [J]. Journal of naval university of engineering, 2021, 33(6): 77-81, 87. DOI: 10.7495/j.issn.1009-3486.2021.06.013.
    [23]
    魏炜, 张宇, 董超, 等. H2-CO燃料气对SOFC性能影响研究 [J]. 电源技术, 2021, 45(12): 1589-1593. DOI: 10.3969/j.issn.1002-087X.2021.12.018.

    WEI W, ZHANG Y, DONG C, et al. Study on performance of SOFC using H2-CO as fuel gas [J]. Chinese journal of power sources, 2021, 45(12): 1589-1593. DOI: 10.3969/j.issn.1002-087X.2021.12.018.
    [24]
    王佳宾, 徐虎, 董平, 等. 基于金属铝水反应的固体氧化物燃料电池/氦氙布雷顿循环动力系统研究 [J]. 推进技术, 2022, 43(10): 55-63. DOI: 10.13675/j.cnki.tjjs.210426.

    WANG J B, XU H, DONG P, et al. Solid oxide fuel cell/helium-xenon Brayton cycle power system based on aluminum water combustion [J]. Journal of propulsion technology, 2022, 43(10): 55-63. DOI: 10.13675/j.cnki.tjjs.210426.
    [25]
    PENG W K, CHEN H, LIU J, et al. Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle [J]. Energy conversion and management, 2021, 245: 114622. DOI: 10.1016/j.enconman.2021.114622.
    [26]
    ALMEIDA PAZMIÑ G A, JUNG S, ROH S H. Process modeling of a hybrid-sulfur thermochemical cycle combined with solid oxide fuel cell/gas turbine system [J]. Energy conversion and management, 2022, 262: 115669. DOI: 10.1016/j.enconman.2022.115669.
    [27]
    陆玉正. 太阳能与固体氧化物电解池联合制氢关键技术的研究 [D]. 南京: 东南大学, 2017.

    LU Y Z. Research on key issue on hydreogy production combing solar energy and low temperature of solid oxide electrolysis cells [D]. Nanjing: Southeast University, 2017.
    [28]
    王春晓. 低压饱和蒸汽轮机的结构设计与优化 [D]. 青岛: 青岛科技大学, 2013. DOI: 10.7666/d.J0105890.

    WANG C X. Structure design and optimization of low-pressure saturated steam turbine [D]. Qingdao: Qingdao University of Science and Technology, 2013. DOI: 10.7666/d.J0105890.
    [29]
    张秦玮, 张筱松, 邓美隆. 一种新型化学链制氢与SOFC集成的能量系统 [J]. 中国电机工程学报, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559.

    ZHANG Q W, ZHANG X S, DENG M L. A novel system integrating chemical-looping hydrogen generation and solid oxide fuel cell [J]. Proceedings of the CSEE, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559.
    [30]
    CHINDA P, BRAULT P. The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling [J]. International journal of hydrogen energy, 2012, 37(11): 9237-9248. DOI: 10.1016/j.ijhydene.2012.03.005.
  • Related Articles

    [1]LUO Bixiong, HU Junliang, YANG Yajun, REN Zongdong, HE Yadong. Modeling and Stable Operation Control Method for Airborne Wind Energy System Considering Longitudinal Disturbance Stability[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 1-11. DOI: 10.16516/j.ceec.2024-306
    [2]LI Jie, WANG Jie, LIANG Wenteng, SHI Lushan, WANG Bolun, XIONG Yufeng, ZHANG Liangju, ZHOU Xia. Load Model Construction and Parameter Identification Method of Inverter-Interfaced Distributed Generator[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(6): 164-173. DOI: 10.16516/j.ceec.2024.6.17
    [3]LUO Xianyong, LI Bin, LIN Yan, XIANG Kui, ZHU Guangtao. Research on Optimization of Three-Circuit Parameters for Thermonuclear Fusion Power Generation Island[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(3): 126-136. DOI: 10.16516/j.ceec.2024.3.14
    [4]SHI Qinpeng, GUO Ru, HONG Jianfeng, WANG Zenghui, LI Jun, WANG Hao, ZENG Xiaochao, JIANG Jianning. Influencing Factors of Generation Efficiency of Vertical Gravity Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-247
    [5]LI Zhuoyan, DUAN Liping, LI Shaohua, FENG Jing. Modeling and Simulation Analysis of MW-Level Fuel Cell Distributed Generation System Based on AspenPlus[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 78-86. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.010
    [6]XU Xianlong, ZHANG Yifan, SUN Haocheng, ZHAO Haoteng, ZHAO Guorui, YANG Hao, WEI Shuzhou. Research Progress of Flywheel Energy Storage Technology and Its Coupling Power Generation[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 119-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.014
    [7]ZHAO Haoteng, SONG Minhang, WANG Jinxing. Parameter Design of Coupled Thermoelectric Conversion Auxiliary Peak Shaving System for Condensing Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 72-79. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.008
    [8]SUN Haocheng, SONG Minhang, GUO Puwei, ZHANG Changyong, WANG Jinxing. Parameter Design of Heat Storage for Auxiliary Peak Regulation System in Thermal Power Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 9-15. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.002
    [9]Jing CAO, Xiaobo WANG, Xiang SUN, Zhibin LUO. High-efficiency Clean Power Generation System Based on Solid Oxide Fuel Cell[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 28-34. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.004
    [10]Jiansheng CHEN, Yingzong LIANG, Xianglong LUO, Chenggang DENG, Zhanpeng LIANG. Equation-based Modeling for Solar Power Tower-supercritical CO2 Integrated System Anaylsis and Optimization[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(1): 1-7. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.001

Catalog

    LI Huajian

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (436) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return