Advanced Search
LU Haowei, JIANG Genzhu, WANG Xiaorong. Laminar combustion characteristics of ethanol-hydrogen premixed fuel [J]. Southern energy construction, 2025, 12(2): 134-144. DOI: 10.16516/j.ceec.2024-179
Citation: LU Haowei, JIANG Genzhu, WANG Xiaorong. Laminar combustion characteristics of ethanol-hydrogen premixed fuel [J]. Southern energy construction, 2025, 12(2): 134-144. DOI: 10.16516/j.ceec.2024-179

Laminar Combustion Characteristics of Ethanol-Hydrogen Premixed Fuel

More Information
  • Received Date: May 29, 2024
  • Revised Date: June 17, 2024
  • Accepted Date: June 20, 2024
  • Available Online: August 08, 2024
  •   Objective  With the depletion of fossil fuels and bio-fuels' emergence, ethanol-hydrogen hybrid fuel as a new generation of renewable clean fuel has attracted wide attention, so it is necessary to study the effect of ethanol-hydrogen premixed flame combustion characteristics.
      Method  Based on the constant volume combustion system and combined with high-speed schlieren technology, the effects of the equivalent ratio and pressure on the laminar combustion characteristics of ethanol-hydrogen premixed flame were studied under the conditions of initial temperature of 370 K, hydrogen ratio of 50%, equivalent ratio of 0.7~1.4 and initial pressure of 1, 2 and 4 bar. Focusing on the propagation combustion characteristics of the flame, the laminar combustion velocity was calculated and its influencing factors were analyzed. The relevant reaction model was established with the help of Chemkin simulation platform, and the chemical dynamics of the laminar combustion characteristics were analyzed in detail by using Marinov's ethanol oxidation reaction mechanism.
      Result  The results showed that the laminar combustion velocity was positively correlated with the adiabatic flame temperature and reached the maximum value around φ=1.1. The pressure significantly affects the net heat release rate, and the peak value occurs in the higher temperature region with a greater equivalent ratio. R1:H+O2⇔O+OH represents the most sensitive reaction which promotes the laminar combustion velocity of the flame. With the increase of pressure, the peak molar fraction of H, OH, and O free radicals gradually decreased and moved upstream. With the increase of the equivalent ratio, the molar fraction of H and O free radicals gradually decreased, and the molar fraction of OH free radicals first increased and then decreased.
      Conclusion  The equivalent ratio, pressure and active free radicals have significant effects on the laminar combustion characteristics of ethanol-hydrogen premixed fuel, which can provide theoretical basis for subsequent studies.
  • [1]
    SIKIRU S, OLADOSU T L, AMOSA T I, et al. Hydrogen-powered horizons: transformative technologies in clean energy generation, distribution, and storage for sustainable innovation [J]. International journal of hydrogen energy, 2024, 56: 1152-1182. DOI: 10.1016/j.ijhydene.2023.12.186.
    [2]
    李小龙, 洪小飞, 陈宇卿. 燃气轮机掺氢燃烧技术 [J]. 南方能源建设, 2023, 10(6): 14-25. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.002.

    LI X L, HONG X F, CHEN Y Q. Hydrogen-blended combustion technology in gas turbine [J]. Southern energy construction, 2023, 10(6): 14-25. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.002.
    [3]
    MENDIBURU A Z, LAUERMANN C H, HAYASHI T C, et al. Ethanol as a renewable biofuel: combustion characteristics and application in engines [J]. Energy, 2022, 257: 124688. DOI: 10.1016/j.energy.2022.124688.
    [4]
    刘鑫, 田静, 赵梅, 等. 清洁燃料车用乙醇汽油现状及展望 [J]. 云南化工, 2018, 45(7): 1-2. DOI: 10.3969/j.issn.1004-275X.2018.07.001.

    LIU X, TIAN J, ZHAO M, et al. Current status and prospects of clean fuel vehicle ethanol gasoline [J]. Yunnan chemical technology, 2018, 45(7): 1-2. DOI: 10.3969/j.issn.1004-275X.2018.07.001.
    [5]
    AYAD S M M E, BELCHIOR C R P, SODRÉ J R. Hydrogen addition to ethanol-fuelled engine in lean operation to improve fuel conversion efficiency and emissions [J]. International journal of hydrogen energy, 2024, 49: 744-752. DOI: 10.1016/j.ijhydene.2023.09.048.
    [6]
    王子兴, 杨美娥, 王浩鹏, 等. 基于多孔介质燃烧器的氨重整制氢技术分析 [J]. 南方能源建设, 2023, 10(3): 55-62. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.006.

    WANG Z X, YANG M E, WANG H P, et al. Technical analysis of ammonia reforming hydrogen production based on porous medium burner [J]. Southern energy construction, 2023, 10(3): 55-62. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.006.
    [7]
    张杰, 罗雪鹏. 液氢制-储-运-加关键技术发展现状及展望 [J]. 发电技术, 2024, 45(5): 888-898. DOI: 10.12096/j.2096-4528.pgt.24019.

    ZHANG J, LUO X P. Development status and prospect of key technologies for liquid hydrogen production-storage-transportation-refueling [J]. Power generation technology, 2024, 45(5): 888-898. DOI: 10.12096/j.2096-4528.pgt.24019.
    [8]
    赵钦新, 王宗一, 邓世丰, 等. 氢气燃烧技术及其进展 [J]. 科学技术与工程, 2022, 22(36): 15870-15880. DOI: 10.3969/j.issn.1671-1815.2022.36.003.

    ZHAO Q X, WANG Z Y, DENG S F, et al. Hydrogen combustion technology and progress [J]. Science technology and engineering, 2022, 22(36): 15870-15880. DOI: 10.3969/j.issn.1671-1815.2022.36.003.
    [9]
    VASANTHAKUMAR R, LOGANATHAN M, CHOCKALINGAM S, et al. A study on the effect of hydrogen enriched intake air on the characteristics of a diesel engine fueled with ethanol blended diesel [J]. International journal of hydrogen energy, 2023, 48(53): 20507-20524. DOI: 10.1016/j.ijhydene.2023.02.113.
    [10]
    AYAD S M M E, BELCHIOR C R P, SODRÉ J R. Exergoeconomic analysis of a lean burn engine operating with ethanol and hydrogen addition [J]. International journal of hydrogen energy, 2024, 61: 387-394. DOI: 10.1016/j.ijhydene.2024.02.279.
    [11]
    刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16.

    LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16.
    [12]
    WANG Y F, VERHELST S. Comparative analysis and optimisation of hydrogen combustion mechanism for laminar burning velocity calculation in combustion engine modelling [J]. International journal of hydrogen energy, 2024, 56: 880-893. DOI: 10.1016/j.ijhydene.2023.12.214.
    [13]
    XU C S, WANG Q Y, LI X L, et al. Effect of hydrogen addition on the laminar burning velocity of n-decane/air mixtures: experimental and numerical study [J]. International journal of hydrogen energy, 2022, 47(44): 19263-19274. DOI: 10.1016/j.ijhydene.2022.03.290.
    [14]
    XIAO H H, LI H Z. Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/AIR premixed flames [J]. Combustion and flame, 2022, 245: 112372. DOI: 10.1016/j.combustflame.2022.112372.
    [15]
    CHEN J N, YANG X M. Numerical study of hydrogen blending on the laminar combustion characteristics of n-decane/air mixtures [J]. Chemical engineering science, 2023, 277: 118872. DOI: 10.1016/j.ces.2023.118872.
    [16]
    OPPONG F, LUO Z Y, LI X L, et al. Laminar combustion characteristics of ethyl acetate/hydrogen/air at elevated pressures [J]. Fuel, 2022, 330: 125631. DOI: 10.1016/j.fuel.2022.125631.
    [17]
    徐一博, 暴秀超, 左子农, 等. 掺氢对汽油预混燃烧特性的影响 [J]. 内燃机工程, 2022, 43(2): 12-19. DOI: 10.13949/j.cnki.nrjgc.2022.02.002.

    XU Y B, BAO X C, ZUO Z N, et al. Effects of hydrogen addition on premixed combustion characteristics of gasoline [J]. Chinese internal combustion engine engineering, 2022, 43(2): 12-19. DOI: 10.13949/j.cnki.nrjgc.2022.02.002.
    [18]
    WANG X R, ZHANG Y, LI T, et al. Investigation of cellularization characteristics of hydrogen-methane-ethanol expanding spherical flame at elevated pressures [J]. Combustion and flame, 2023, 255: 112866. DOI: 10.1016/j.combustflame.2023.112866.
    [19]
    闫晨朝, 姜根柱, 王筱蓉. 氢气-乙醇-空气预混层流燃烧特性仿真研究 [J]. 新能源进展, 2023, 11(5): 450-456. DOI: 10.3969/j.issn.2095-560X.2023.05.009.

    YAN C Z, JIANG G Z, WANG X R. Simulation study on laminar combustion characteristics of hydrogen-ethanol-air premix [J]. Advances in new and renewable energy, 2023, 11(5): 450-456. DOI: 10.3969/j.issn.2095-560X.2023.05.009.
    [20]
    SUN Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures [J]. International journal of hydrogen energy, 2019, 44(1): 469-476. DOI: 10.1016/j.ijhydene.2018.02.094.
    [21]
    XIAO P, LEE C F, WU H, et al. Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures [J]. Renewable energy, 2020, 154: 209-222. DOI: 10.1016/j.renene.2020.03.037.
    [22]
    MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International journal of chemical kinetics, 1999, 31(3): 183-220. DOI: 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X.
    [23]
    D’ALESSIO F, MATTEUCCI C, LAPENNA P E, et al. Intrinsic instability of lean hydrogen/ammonia premixed flames: influence of soret effect and pressure [J]. Fuel communications, 2024, 19: 100110. DOI: 10.1016/j.jfueco.2024.100110.
    [24]
    HINTON N, STONE R, CRACKNELL R, et al. Aqueous ethanol laminar burning velocity measurements using constant volume bomb methods [J]. Fuel, 2018, 214: 127-134. DOI: 10.1016/j.fuel.2017.10.113.
    [25]
    SHANKAR V, FANG X H, HINTON N, et al. Effect of ethanol addition on the laminar burning velocities of gasoline surrogates [J]. Fuel, 2022, 327: 125186. DOI: 10.1016/j.fuel.2022.125186.
    [26]
    KATOCH A, MILLÁN-MERINO A, KUMAR S. Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures [J]. Fuel, 2018, 231: 37-44. DOI: 10.1016/j.fuel.2018.05.083.
    [27]
    ECKART S, BENAISSA S, ALSULAMI R A, et al. Laminar burning velocity, emissions, and flame structure of dimethyl ether-hydrogen air mixtures [J]. International journal of hydrogen energy, 2023, 48(91): 35771-35785. DOI: 10.1016/j.ijhydene.2023.05.261.
    [28]
    WANG Z, JI C W, WANG D, et al. Experimental and numerical study on laminar burning velocity and premixed combustion characteristics of NH3/C3H8/air mixtures [J]. Fuel, 2023, 331: 125936. DOI: 10.1016/j.fuel.2022.125936.
    [29]
    WANG X R, YAN C Z, ZHANG Y, et al. Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: experimental and numerical analysis [J]. Renewable energy, 2024, 227: 120493. DOI: 10.1016/j.renene.2024.120493.
    [30]
    XIE S R, LI X, LI T, et al. Experimental and numerical study on the laminar burning velocities of n-decane/toluene/air mixtures at elevated temperatures [J]. Fuel, 2022, 322: 124176. DOI: 10.1016/j.fuel.2022.124176.

Catalog

    WANG Xiaorong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (414) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return