Advanced Search
MENG Dan, CHEN Zhenghong, XU Yang, et al. The impact of extreme weather on the entire process of wind power development and response strategies [J]. Southern energy construction, 2025, 12(2): 1-14. DOI: 10.16516/j.ceec.2024-334
Citation: MENG Dan, CHEN Zhenghong, XU Yang, et al. The impact of extreme weather on the entire process of wind power development and response strategies [J]. Southern energy construction, 2025, 12(2): 1-14. DOI: 10.16516/j.ceec.2024-334

The Impact of Extreme Weather on the Entire Process of Wind Power Development and Response Strategies

More Information
  • Received Date: October 01, 2024
  • Revised Date: November 01, 2024
  • Available Online: November 20, 2024
  •   Objective  The implementation of carbon neutrality and carbon peaking policies has promoted the rapid development of wind power, a clean energy source. In recent years, extreme weather and climate events occur frequently, and with the large-scale production and grid connection of wind power, the issue of meteorological disasters in wind farms caused by extreme weather has become more prominent. Extreme weather not only poses severe challenges to wind power development, but may also affect the grid stability and reliability of power supply. Therefore, it is necessary to deeply understand the mechanism of how extreme weather affects wind power development, and take effective prevention and response measures to ensure the healthy and safe development of the wind power industry.
      Method  By reviewing the recently published literature on meteorological disasters in wind farms, the paper classified the high-impact weather affecting wind power development into two major categories: extreme weather and adverse weather. It summarized the impacts of extreme weather such as typhoon, strong wind, lightning, rainstorm, sandstorm, cryogenic freezing and high temperature, as well as adverse weather such as calm breeze wind, salt spray and sea fog, on wind farm planning, resource assessment, survey and design, installation construction, infrastructure, wind power output and wind power prediction during the planning and design, construction and operation stage of wind farm.
      Result  In the planning and design stage, it is necessary to identify and assess the risks of extreme weather, and carry out scientific macro and micro site selection. In the construction stage, rainstorm, cryogenic freezing and so on can affect transportation and delay the construction period; strong winds, heavy rain and so on affect hoisting and cause operational risks; sea fog, lightning and so on may affect the safety of offshore wind power construction. In the production and operation stage, extreme weather can lead to large-scale shutdown of wind farms and loss of output, and even threaten the safe and stable operation of the power grid. Except for tropical cyclones of a certain intensity, other high-impact weather events are not conducive to wind power output. The frequent occurrence of extreme weather leads to a reduction in the accuracy of wind power forecasting.
      Conclusion  Finally, measures to cope with high-impact weather are proposed, including strengthening emergency management and extreme weather monitoring and early warning, considering the impact of extreme weather on wind power forecasting, and strengthening the construction of energy storage system.
  • [1]
    常蕊, 肖潺, 王阳, 等. 全球变暖背景下风电开发面临的气候服务挑战 [J]. 全球能源互联网, 2021, 4(1): 28-36. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.005.

    CHANG R, XIAO C, WANG Y, et al. Growing challenge of climate service for wind energy deployment under global warming [J]. Journal of global energy interconnection, 2021, 4(1): 28-36. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.005.
    [2]
    Global Wind Energy Council. Global wind report 2024 [R/OL]. (2024-04) [2024-05-29]. https: //gwec. net/global-wind-report-2024.
    [3]
    鲁宗相, 李昊, 乔颖. 从灵活性平衡视角的高比例可再生能源电力系统形态演化分析 [J]. 全球能源互联网, 2021, 4(1): 12-18. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.003.

    LU Z X, LI H, QIAO Y. Morphological evolution of power systems with high share of renewable energy generations from the perspective of flexibility balance [J]. Journal of global energy interconnection, 2021, 4(1): 12-18. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.003.
    [4]
    国家发展改革委, 国家能源局. 关于促进新时代新能源高质量发展的实施方案: 国办函〔2022〕39号 [EB/OL]. (2022-05-30) [2023-08-30]. https://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.

    National Development and Reform Commission, National Energy Administration. Implementation plan for promoting high-quality development of new energy in the new era: state office letter 〔2022〕 No. 39 [EB/OL]. (2022-05-30) [2023-08-30]. https://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.
    [5]
    赵静波, 张思聪, 廖诗武. 美国加州2020年8月中旬停电事故分析及思考 [J]. 电力工程技术, 2020, 39(6): 52-57. DOI: 10.12158/j.2096-3203.2020.06.008.

    ZHAO J B, ZHANG S C, LIAO S W. Analysis and reflection for the rotating outages in mid-August 2020 in California [J]. Electric power engineering technology, 2020, 39(6): 52-57. DOI: 10.12158/j.2096-3203.2020.06.008.
    [6]
    SU K, JIANG L P, LIU J Z. Power source-power grid coordinated typhoon defense strategy based on multiagent dynamic game theory [J]. Global energy interconnection, 2021, 4(3): 285-294. DOI: 10.1016/j.gloei.2021.07.008.
    [7]
    景锐, 韩晖, 林剑艺. 计及台风极端天气影响的城市能源规划 [J]. 全球能源互联网, 2021, 4(2): 178-187. DOI: 10.19705/j.cnki.issn2096-5125.2021.02.008.

    JING R, HAN H, LIN J Y. Urban energy planning considering impacts of typhoon extreme weather [J]. Journal of global energy interconnection, 2021, 4(2): 178-187. DOI: 10.19705/j.cnki.issn2096-5125.2021.02.008.
    [8]
    高琳, 王敬涛. 风电利用如何迈过气象坎儿 [N]. 中国气象报, 2011-11-15.

    GAO L, WANG J T. How can wind power utilization overcome the meteorological challenges [N]. China Meteorological News, 2011-11-15.
    [9]
    IPCC. Climate change 2021: the physical science basis [R]. Switzerland: IPCC, 2021.
    [10]
    闫泽辉, 李更丰, 任彦哲. 构建高弹性城市能源系统的关键技术 [J]. 电力建设, 2023, 44(5): 1-12. DOI: 10.12204/j.issn.1000-7229.2023.05.001.

    YAN Z H, LI G F, REN Y Z. Key technologies for building highly resilient urban energy systems [J]. Electric power construction, 2023, 44(5): 1-12. DOI: 10.12204/j.issn.1000-7229.2023.05.001.
    [11]
    陈勇全. 华南沿海海上风电的台风大风风险评估研究 [D]. 昆明: 云南财经大学, 2023.

    CHEN Y Q. Risk assessment of tropical cyclone-induced strong winds for offshore wind power in coastal areas of the South China [D]. Kunming: Yunnan University of Finance and Economics, 2023.
    [12]
    顾建伟, 陈维江, 黄胜鑫, 等. 风电机组叶片雷击风险分布特征 [J]. 中国电机工程学报, 2023, 43(9): 3651-3663. DOI: 10.13334/j.0258-8013.pcsee.220354.

    GU J W, CHEN W J, HUANG S X, et al. Distribution characteristics of lightning strike risk along wind turbine blades [J]. Proceedings of the CSEE, 2023, 43(9): 3651-3663. DOI: 10.13334/j.0258-8013.pcsee.220354.
    [13]
    杨德旭, 兰海金, 尹秀云. 风电叶片雨蚀测试技术浅析 [J]. 复合材料科学与工程, 2024(5): 121-128. DOI: 10.19936/j.cnki.2096-8000.20240528.017.

    YANG D X, LAN H J, YIN X Y. Analysis of rain erosion testing technology for wind turbine blades [J]. Composites science and engineering, 2024(5): 121-128. DOI: 10.19936/j.cnki.2096-8000.20240528.017.
    [14]
    陈煌, 靳交通, 李诚亮, 等. 海上风电叶片前缘雨蚀防护材料研究 [J]. 船舶工程, 2020, 42(增刊1): 558-559, 563. DOI: 10.13788/j.cnki.cbgc.2020.S1.129.

    CHEN H, JIN J T, LI C L, et al. Research on rain erosion protection materials for leading edge of offshore wind turbine blades [J]. Ship engineering, 2020, 42(Suppl.1): 558-559, 563. DOI: 10.13788/j.cnki.cbgc.2020.S1.129.
    [15]
    梁恩培. 风力机叶片涂层风洞冲蚀磨损试验及模型研究 [D]. 兰州: 兰州理工大学, 2021. DOI: 10.27206/d.cnki.ggsgu.2021.001033.

    LIANG E P. Wind tunnel erosion test and model study of wind turbine blade coating [D]. Lanzhou: Lanzhou University of Technology, 2021. DOI: 10.27206/d.cnki.ggsgu.2021.001033.
    [16]
    梁恩培, 马高生, 李晔, 等. 沙尘环境对风力机关键零部件力学特性影响综述 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(3): 234701. DOI: 10.1360/SSPMA-2022-0143.

    LIANG E P, MA G S, LI Y, et al. Summary of the impact of aeolian sand environment on key parts of wind turbine [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2023, 53(3): 234701. DOI: 10.1360/SSPMA-2022-0143.
    [17]
    王之东, 袁凌, 王小虎, 等. 叶片覆冰对风电机组关键结构安全性的影响 [J]. 水电能源科学, 2021, 39(5): 184-188.

    WANG Z D, YUAN L, WANG X H, et al. Effect of blades icing on safety of key structures of wind turbine [J]. Water resources and power, 2021, 39(5): 184-188.
    [18]
    郑婷婷, 单小雨, 马继涛, 等. 寒潮天气对风电运行和功率预测的影响分析 [J]. 内蒙古电力技术, 2023, 41(4): 8-12. DOI: 10.19929/j.cnki.nmgdljs.2023.0048.

    ZHENG T T, SHAN X Y, MA J T, et al. Impact of cold wave weather on wind power operation and power prediction [J]. Inner Mongolia electric power, 2023, 41(4): 8-12. DOI: 10.19929/j.cnki.nmgdljs.2023.0048.
    [19]
    杜树成, 何如, 苏志. 灾害性天气对风电场的影响与对策研究 [J]. 气象研究与应用, 2013, 34 (增刊2): 120-122.

    DU S C, HE R, SU Z. Research on the impact of disastrous weather on wind farms and countermeasures [J]. Journal of meteorological research and application, 2013, 34 (Suppl.2): 120-122.
    [20]
    曾琦, 陈正洪. 近年来气象灾害对风电场影响的研究进展 [J]. 气象科技进展, 2019, 9(2): 49-55. DOI: 10.3969/j.issn.2095-1973.2019.02.010.

    ZENG Q, CHEN Z H. A review of the effect of meteorological disasters on wind farms in recent years [J]. Advances in meteorological science and technology, 2019, 9(2): 49-55. DOI: 10.3969/j.issn.2095-1973.2019.02.010.
    [21]
    葛珊珊, 张韧. 全球气候变化背景下灾害性天气变化及对海上风电的影响 [J]. 中国工程科学, 2010, 12(11): 71-77. DOI: 10.3969/j.issn.1009-1742.2010.11.013.

    GE S S, ZHANG R. Disastrous weather trend under global climate change and its influence on offshore wind power [J]. Strategic Study of CAE, 2010, 12(11): 71-77. DOI: 10.3969/j.issn.1009-1742.2010.11.013.
    [22]
    NING F S, PIEN K C, LIOU W J, et al. Site selection for offshore wind power farms with natural disaster risk assessment: a case study of the waters off Taiwan's west coast [J]. Energies, 2024, 17(11): 2711. DOI: 10.3390/en17112711.
    [23]
    鞠冠章, 王靖然, 崔琛, 等. 极端天气事件对新能源发电和电网运行影响研究 [J]. 智慧电力, 2022, 50(11): 77-83. DOI: 10.3969/j.issn.1673-7598.2022.11.013.

    JU G Z, WANG J R, CUI C, et al. Impact of extreme weather events on new energy power generation and power grid operation [J]. Smart power, 2022, 50(11): 77-83. DOI: 10.3969/j.issn.1673-7598.2022.11.013.
    [24]
    丁一汇. 高等天气学(2版) [M]. 北京: 气象出版社, 2005.

    DING Y H. Advanced synoptic meteorology (2nd ed. ) [M]. Beijing: China Meteorological Press, 2005.
    [25]
    JIAO X, XING H Y, ZHANG Q L, et al. Meteorological risk identification and assessment of offshore wind farms [J]. IOP conference series: earth and environmental science, 2020, 514(3): 032016. DOI: 10.1088/1755-1315/514/3/032016.
    [26]
    中国能源建设集团云南电力设计院有限公司. 高海拔山地风电场选址技术取得突破 [J]. 云南科技管理, 2022, 35(4): 87. DOI: 10.19774/j.cnki.53-1085.2022.04.029.

    China Energy Construction Group Yunnan Electric Power Design Institute Co. , Ltd. Breakthrough in site selection technology for high-altitude mountain wind farms [J]. Yunnan science and technology management, 2022, 35(4): 87. DOI: 10.19774/j.cnki.53-1085.2022.04.029.
    [27]
    杨昊. 我国海上风电发展探析与对策建议 [J]. 大众用电, 2022, 37(9): 13-15.

    YANG H. Analysis and countermeasures for developing offshore wind power in China [J]. Popular utilization of electricity, 2022, 37(9): 13-15.
    [28]
    胡威, 张天姣, 陈晓军. 风电项目全生命周期气象灾害风险管理 [J]. 水电与新能源, 2021, 35(2): 1-3. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2021.02.001.

    HU W, ZHANG T J, CHEN X J. Life cycle risk management of meteorological disaster for wind power projects [J]. Hydropower and new energy, 2021, 35(2): 1-3. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2021.02.001.
    [29]
    王毅霞. 风电项目风机安装安全管控要点 [J]. 建设监理, 2021(2): 28-30, 34. DOI: 10.3969/j.issn.1007-4104.2021.02.008.

    WANG Y X. Key points of safety control in wind turbine installation for wind power projects [J]. Project management, 2021(2): 28-30, 34. DOI: 10.3969/j.issn.1007-4104.2021.02.008.
    [30]
    盛海磊. 我国海上风电项目风险评估研究 [D]. 北京: 对外经济贸易大学, 2022. DOI: 10.27015/d.cnki.gdwju.2022.000991.

    SHENG H L. Risk assessment study of offshore wind power projects in China [D]. Beijing: University of International Business and Economics, 2022. DOI: 10.27015/d.cnki.gdwju.2022.000991.
    [31]
    钟宏宇, 齐全, 高阳, 等. 中国海上风电技术的挑战与应对策略分析 [J]. 东北电力技术, 2016, 37(1): 39-43. DOI: 10.3969/j.issn.1004-7913.2016.01.011.

    ZHONG H Y, QI Q, GAO Y, et al. Challenges and strategies analysis of offshore wind power technology in China [J]. Northeast electric power technology, 2016, 37(1): 39-43. DOI: 10.3969/j.issn.1004-7913.2016.01.011.
    [32]
    LI J W, LI Z N, JIANG Y C, et al. Typhoon resistance analysis of offshore wind turbines: a review [J]. Atmosphere, 2022, 13(3): 451. DOI: 10.3390/atmos13030451.
    [33]
    KIM H, MOON C J, KIM Y G, et al. Analysis of atmospheric stability for the prevention of coastal disasters and the development of efficient coastal renewable energy [J]. Journal of coastal research, 2021, 114(suppl.1): 241-245. DOI: 10.2112/JCR-SI114-049.1.
    [34]
    GLIKSMAN D, AVERBECK P, BECKER N, et al. Review article: a European perspective on wind and storm damage- from the meteorological background to index-based approaches to assess impacts [J]. Natural hazards and earth system sciences, 2023, 23(6): 2171-2201. DOI: 10.5194/nhess-23-2171-2023.
    [35]
    林彬, 余文馨, 陈铭, 等. 沿海风电场雷电危害特点和防护对策 [J]. 农业灾害研究, 2023, 13(12): 313-316. DOI: 10.3969/j.issn.2095-3305.2023.12.103.

    LIN B, YU W X, CHEN M, et al. Characteristics and protection measures of lightning hazards in coastal wind farms [J]. Journal of agricultural catastrophology, 2023, 13(12): 313-316. DOI: 10.3969/j.issn.2095-3305.2023.12.103.
    [36]
    CHEN H F, CHEN W J, WANG Y, et al. Analysis of the cloud-to-ground lightning characteristics before and after installation of the coastal and inland wind farms in China [J]. Electric power systems research, 2021, 190: 106835.
    [37]
    马庆丰. 浅谈风电场架空输电线路防雷 [C]// Anon. 2023年电力行业技术监督工作交流会暨专业技术论坛论文集(上册). 南宁: 中国电力技术市场协会, 2023. DOI: 10.26914/c.cnkihy.2023.049672.

    MA Q F. A brief discussion on lightning protection for overhead power transmission lines in wind farms [C]// Anon. Proceedings of 2023 Power Industry Technical Supervision Work Exchange Meeting and Professional Technical Forum (Volume 1). Nanning: China Electric Power Technology Market Association, 2023. DOI: 10.26914/c.cnkihy.2023.049672.
    [38]
    BARTOLOMÉ L, TEUWEN J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades [J]. Wind energy, 2019, 22(1): 140-151. DOI: 10.1002/we.2272.
    [39]
    桂永强. 风机叶片聚氨酯涂层的雨蚀研究 [D]. 武汉: 武汉理工大学, 2019. DOI: 10.27381/d.cnki.gwlgu.2019.000907.

    GUI Y Q. The rain erosion effects on polyurethane coating for wind blade [D]. Wuhan: Wuhan University of Technology, 2019. DOI: 10.27381/d.cnki.gwlgu.2019.000907.
    [40]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 沙尘天气等级: GB/T 20480-2017 [S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Classification of sand and dust weather: GB/T 20480-2017 [S]. Beijing: Standards Press of China, 2017.
    [41]
    王金岩, 丁坤, 孙亚璐, 等. 强沙尘暴下新能源基地的韧性评估及其提升方法 [J/OL]. 电网技术, 2024: 1-12. (2024-03-29) [2024-09-18]. https://doi.org/10.13335/j.1000-3673.pst.2024.0182.

    WANG J Y, DING K, SUN Y L, et al. Research on resilience assessment and improvement methods of new energy bases under strong sandstorm [J/OL]. Power system technology, 2024: 1-12. (2024-03-29) [2024-09-18]. https://doi.org/10.13335/j.1000-3673.pst.2024.0182.
    [42]
    胡威, 崔冬林, 张双益. 气象灾害对风电项目的影响及风险应对 [J]. 能源与环境, 2020 (5): 114-116. DOI: 10.3969/j.issn.1672-9064.2020.05.043.

    HU W, CUI D L, ZHANG S Y. Impact of meteorological disasters on wind power projects and risk response [J]. Energy and environment, 2020 (5): 114-116. DOI: 10.3969/j.issn.1672-9064.2020.05.043.
    [43]
    陈亮亮, 王佳, 杨丽薇, 等. 风力发电机组的风沙危害及防风沙措施探讨 [J]. 西北水电, 2021(1): 73-75. DOI: 10.3969/j.issn.1006-2610.2021.01.019.

    CHEN L L, WANG J, YANG L W, et al. Discussion on wind-sand hazard and prevention measures for WTGS [J]. Northwest hydropower, 2021(1): 73-75. DOI: 10.3969/j.issn.1006-2610.2021.01.019.
    [44]
    周亚芬. 风沙环境下风力机气动性能及磨损特性研究 [D]. 吉林: 东北电力大学, 2021. DOI: 10.27008/d.cnki.gdbdc.2021.000234.

    ZHOU Y F. Study on aerodynamic performance and erosion characteristis of wind turbine under sandy environment [D]. Jilin: Northeast Electric Power University, 2021. DOI: 10.27008/d.cnki.gdbdc.2021.000234.
    [45]
    成和祥, 行九晖, 刘杰, 等. 风电机组叶片覆冰形成原因及覆冰防治概述 [J]. 电力设备管理, 2021(6): 104-107. DOI: 10.3969/j.issn.2096-2711.2021.6.dlsbgl202106042.

    CHENG H X, XING J H, LIU J, et al. An overview of the causes of icing on wind turbine blades and the prevention and control of icing [J]. Electric power equipment management, 2021(6): 104-107. DOI: 10.3969/j.issn.2096-2711.2021.6.dlsbgl202106042.
    [46]
    张仲香, 刘宝锋, 方晨鑫, 等. 沙戈荒环境下风电叶片中复合材料耐高温性能研究 [J]. 复合材料科学与工程, 2024(3): 103-107. DOI: 10.19936/j.cnki.2096-8000.20240328.015.

    ZHANG Z X, LIU B F, FANG C X, et al. Study on high temperature resistance of composite materials in wind blades under desert environment [J]. Composites science and engineering, 2024(3): 103-107. DOI: 10.19936/j.cnki.2096-8000.20240328.015.
    [47]
    黎相昊, 厉旭旺, 魏煜锋. 风电机组零部件高温及高加速试验研究 [J]. 风能, 2024(4): 78-85. DOI: 10.3969/j.issn.1674-9219.2024.04.015.

    LI X H, LI X W, WEI Y F. Research on high temperature and high acceleration test of wind turbine components [J]. Wind energy, 2024(4): 78-85. DOI: 10.3969/j.issn.1674-9219.2024.04.015.
    [48]
    刘雅婷, 杨明, 于一潇, 等. 基于多场景敏感气象因子优选及小样本学习与扩充的转折性天气日前风电功率预测 [J]. 高电压技术, 2023, 49(7): 2972-2982. DOI: 10.13336/j.1003-6520.hve.20221331.

    LIU Y T, YANG M, YU Y X, et al. Transitional-weather-considered day-ahead wind power forecasting based on multi-scene sensitive meteorological factor optimization and few-shot learning [J]. High voltage engineering, 2023, 49(7): 2972-2982. DOI: 10.13336/j.1003-6520.hve.20221331.
    [49]
    GONCALVES A, LIBERATO M L R, NIETO R. Wind energy assessment during high-impact winter storms in the Iberian Peninsula [J]. Environmental sciences proceedings, 2021, 4(1): 28. DOI: 10.3390/ecas2020-08132.
    [50]
    GONCALVES A, LIBERATO M L R, NIETO R. Wind energy assessment during high-impact winter storms in southwestern Europe [J]. Atmosphere, 2021, 12(4): 509. DOI: 10.3390/atmos12040509.
    [51]
    郜志腾, 张军, 李岳, 等. 极端天气对风电场局地风环境的影响 [J]. 华中科技大学学报(自然科学版), 2024, 52(7): 106-112. DOI: 10.13245/j.hust.240742.

    GAO Z T, ZHANG J, LI Y, et al. Impact of extreme weather on local wind environment of wind farm [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2024, 52(7): 106-112. DOI: 10.13245/j.hust.240742.
    [52]
    叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测 [J]. 中国电机工程学报, 2023, 43(2): 543-554. DOI: 10.13334/j.0258-8013.pcsee.221814.

    YE L, LI Y L, PEI M, et al. Combined approach for short-term wind power forecasting under cold weather with small sample [J]. Proceedings of the CSEE, 2023, 43(2): 543-554. DOI: 10.13334/j.0258-8013.pcsee.221814.
    [53]
    DOBESCH H, KURY G. Basic meteorological concepts and recommendations for the exploitation of wind energy in the atmospheric boundary layer [R]. Wien: Zentralanst. für Meteorologie u. Geodynamik, 2006.
    [54]
    CAI M, ABBASI E, ARASTOOPOUR H. Analysis of the performance of a wind-turbine airfoil under heavy-rain conditions using a multiphase computational fluid dynamics approach [J]. Industrial & engineering chemistry research, 2013, 52(9): 3266-3275. DOI: 10.1021/ie300877t.
    [55]
    IAN B, MICHAEL D, ANDREAS K, et al. Wind energy projects in cold climates [EB/OL]. (2015-07-07) [2024-09-20]. https://www.ieawind.org/index_page_postings/June%207%20posts/task%2019%20cold_climate_%20rp_approved05.12.pdf.
    [56]
    张朴, 章帆, 何伟, 等. 冰冻气候对风电场发电量的影响 [J]. 船舶工程, 2022, 44(增刊2): 144-148. DOI: 10.13788/j.cnki.cbgc.2022.S2.28.

    ZHANG P, ZHANG F, HE W, et al. Impact of frozen climate on power generation of wind farm [J]. Ship engineering, 2022, 44(Suppl.2): 144-148. DOI: 10.13788/j.cnki.cbgc.2022.S2.28.
    [57]
    王浩, 王洪涛, 王春义. 计及冰雪天气影响的风电场短期出力模型 [J]. 电力系统保护与控制, 2016, 44(8): 107-114. DOI: 10.7667/PSPC150978.

    WANG H, WANG H T, WANG C Y. A short-term output model of wind farm considering rain-snow-ice weather [J]. Power system protection and control, 2016, 44(8): 107-114. DOI: 10.7667/PSPC150978.
    [58]
    翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾 [J]. 中国工程科学, 2012, 14(9): 55-63, 84. DOI: 10.3969/j.issn.1009-1742.2012.09.007.

    ZHAI P M, LIU J. Extreme weather/climate events and disaster prevention and mitigation under global warming background [J]. Strategic study of Chinese academy of engineering, 2012, 14(9): 55-63, 84. DOI: 10.3969/j.issn.1009-1742.2012.09.007.
    [59]
    孙荣富, 徐海翔, 吴林林, 等. 中国区域低温天气及其对风力发电影响的统计 [J]. 全球能源互联网, 2022, 5(1): 2-10. DOI: 10.19705/j.cnki.issn2096-5125.2022.01.002.

    SUN R F, XU H X, WU L L, et al. Statistics of cold weather and its impact on wind power generation in China [J]. Journal of global energy interconnection, 2022, 5(1): 2-10. DOI: 10.19705/j.cnki.issn2096-5125.2022.01.002.
    [60]
    季丰, 徐伟, 王冬良. 基于Fluent的集风罩工作特性分析 [J]. 可再生能源, 2016, 34(8): 1190-1195. DOI: 10.13941/j.cnki.21-1469/tk.2016.08.014.

    JI F, XU W, WANG D L. Operating characteristics analysis of wind capturing hood based on Fluent software [J]. Renewable energy resources, 2016, 34(8): 1190-1195. DOI: 10.13941/j.cnki.21-1469/tk.2016.08.014.
    [61]
    李滨海, 季丰, 秦洪艳. 新型城市微风发电装置 [J]. 风能, 2015(4): 92-96.

    LI B H, JI F, QIN H Y. New urban breeze power generation device [J]. Wind energy, 2015(4): 92-96.
    [62]
    步雪琳. 储能, 木桶上的短板 [J]. 环境经济, 2022(7): 1.

    BU X L. Energy storage, the short board on the barrel [J]. Environmental economy, 2022(7): 1.
    [63]
    YU Y X, HAN X S, YANG M, et al. Probabilistic prediction of regional wind power based on spatiotemporal quantile regression [J]. IEEE transactions on industry applications, 2020, 56(6): 6117-6127. DOI: 10.1109/TIA.2020.2992945.
    [64]
    LI P, WANG C F, WU Q W, et al. Risk-based distributionally robust real-time dispatch considering voltage security [J]. IEEE transactions on sustainable energy, 2021, 12(1): 36-45. DOI: 10.1109/TSTE.2020.2964949.
    [65]
    于欣楠. 考虑风电场功率爬坡的超短期组合预测研究 [D]. 吉林: 东北电力大学, 2022. DOI: 10.27008/d.cnki.gdbdc.2022.000187.

    YU X N. Study on ultra-short-term combined forecasting considering wind farm power ramp events [D]. Jilin: Northeast Electric Power University, 2022. DOI: 10.27008/d.cnki.gdbdc.2022.000187.
    [66]
    张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望 [J]. 电网技术, 2018, 42(6): 1783-1792. DOI: 10.13335/j.1000-3673.pst.2017.3076.

    ZHANG D Y, DAI Y, ZHANG X, et al. Review and prospect of research on wind power ramp events [J]. Power system technology, 2018, 42(6): 1783-1792. DOI: 10.13335/j.1000-3673.pst.2017.3076.
    [67]
    陈红宝, 赵斌, 李洋. 甘肃冰冻天气特征及其对风电场运行的影响研究 [J]. 甘肃水利水电技术, 2019, 55(7): 34-39. DOI: 10.19645/j.issn2095-0144.2019.07.010.

    CHEN H B, ZHAO B, LI Y. Ganshu water resources and hydropower technology [J]. Gansu water resources and hydropower technology, 2019, 55(7): 34-39. DOI: 10.19645/j.issn2095-0144.2019.07.010.
    [68]
    孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述 [J]. 高电压技术, 2021, 47(4): 1129-1143. DOI: 10.13336/j.1003-6520.hve.20201780.

    SUN R F, ZHANG T, HE Q, et al. Review on key technologies and applications in wind power forecasting [J]. High voltage engineering, 2021, 47(4): 1129-1143. DOI: 10.13336/j.1003-6520.hve.20201780.
    [69]
    余潇潇, 宋福龙, 李隽, 等. 含高比例新能源电力系统极端天气条件下供电安全性的提升 [J]. 现代电力, 2023, 40(3): 303-313. DOI: 10.19725/j.cnki.1007-2322.2021.0321.

    YU X X, SONG F L, LI J, et al. Power supply security improvement of power grid with high proportion of renewable energy under extreme weather events [J]. Modern electric power, 2023, 40(3): 303-313. DOI: 10.19725/j.cnki.1007-2322.2021.0321.
    [70]
    关玉明, 李祥利, 苗艺男, 等. 高效微风发电装置的数值模拟与风洞试验 [J]. 机械设计与制造, 2022(4): 126-130. DOI: 10.19356/j.cnki.1001-3997.20211110.017.

    GUAN Y M, LI X L, MIAO Y N, et al. The numerical simulation and wind tunnel test of an efficient breeze generator [J]. Machinery design & manufacture, 2022(4): 126-130. DOI: 10.19356/j.cnki.1001-3997.20211110.017.
    [71]
    甘乾煜. 储能应用于风电功率波动平抑的控制策略 [D]. 西安: 西安理工大学, 2023. DOI: 10.27398/d.cnki.gxalu.2023.000977.

    GAN Q Y. Control strategy of energy storage for suppressing wind power fluctuation [D]. Xi'an: Xi'an University of Technology, 2023. DOI: 10.27398/d.cnki.gxalu.2023.000977.
  • Related Articles

    [1]SHI Liuti, CHEN Yunhui, TU Jiahuang. Impact of Wake Interference Suppression Strategies on the Aerodynamic Performance of Twin Wind Turbines[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 79-96. DOI: 10.16516/j.ceec.2024-311
    [2]DENG Mingyang, PEI Hao, XU Lina, LIU Shimeng. Research Progress on the Impact of Wind Farms and Photovoltaic Power Plants on Local Climate[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 15-25. DOI: 10.16516/j.ceec.2024-301
    [3]JIANG Wanli, WANG Ruoyu, LI Jiajing, LIANG Jingyi. AC Fault Mechanism and Impact Analysis of Offshore Wind Power Connected to Flexible and Direct Systems[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 91-99. DOI: 10.16516/j.ceec.2023-268
    [4]CAO Chen, WANG Zengping. Reflections on the Impact of Extreme Weather on New Power Systems and Countermeasures[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 43-57. DOI: 10.16516/j.ceec.2024-367
    [5]WANG Binbin, YU Jiang, ZHANG Rong, SUN Pengjie. Influence of Atmospheric Stability on Wind Power Output Under Typical Wind Field Topography[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(1): 105-111. DOI: 10.16516/j.ceec.2024.1.11
    [6]YANG Wei, QIN Chuan, ZENG Yulin, WU Jing, LI Xianghong. Analysis of the Impact of Low Temperature and Freezing Weather in Northern Guangxi on High-Altitude Wind Power Generation[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-124
    [7]YANG Xiaotian, HUANG Zhijun. Analysis on the Impact of Subsidy Payment Lag and Electricity Price Reduction on Offshore Wind Farm Project Benefit[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 47-50. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.007
    [8]Jiaxiong LIN, Dinggui LUO, Zhuhua KUANG, Jian ZHANG. Geological Environmental Impact Assessment of Mines in Guangzhou[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 102-109. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.017
    [9]Yalu NIU, Yan LI, Yin WANG. Research on the Influence of Upwind Hilltop on the Satety Impact of the Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 43-49. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.007
    [10]Ren HU, Jinshao YE, Yongle QI. Impact and Harm Mitigation of Offshore Wind Farms on Birds[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 1-7. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.001

Catalog

    XU Peihua, xphboxky@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (828) PDF downloads (138) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return