Advanced Search
HOU Chenglong, LAI Zhenya, CHEN Jiaying, et al. Research review of CO2 capture, utilization and storage technology in Zhejiang Province [J]. Southern energy construction, 2024, 11(5): 26-36. DOI: 10.16516/j.ceec.2024.5.03
Citation: HOU Chenglong, LAI Zhenya, CHEN Jiaying, et al. Research review of CO2 capture, utilization and storage technology in Zhejiang Province [J]. Southern energy construction, 2024, 11(5): 26-36. DOI: 10.16516/j.ceec.2024.5.03

Research Review of CO2 Capture, Utilization and Storage Technology in Zhejiang Province

More Information
  • Received Date: April 25, 2023
  • Revised Date: June 29, 2024
  • Available Online: September 29, 2024
  •   Introduction  The green and low-carbon transformation and industrial restructuring under the premise of energy security is a serious challenge faced by Zhejiang Province to achieve its "carbon peaking and carbon neutrality" goals. Given the high proportion of coal-fired power generation in Zhejiang, carbon capture, utilization and storage (CCUS) technology, as an important choice to realize the low-carbon utilization of fossil energy, is vital to the "double carbon" technology system in the energy sector and industrial circle of the province.
      Method  This paper presents a research review of CCUS technology from multiple aspects, including CO2 capture, transportation, utilization and storage, and introduces the development of CCUS demonstration projects in Zhejiang. This study summarizes the features of the major technologies throughout the full CCUS chain, and briefly analyzes the existing challenges amid the ongoing technological advancements. Besides, the prospect of CCUS technology in Zhejiang is explored along with corresponding suggestions.
      Result  Zhejiang boasts a solid technical foundation in the field of CCUS, especially in CO2 capture, and has numerous full-chain demonstration projects employing various process routes, including pre-combustion and post-combustion capture (CO2 capture), biological, mineral, and chemical utilization (CO2 utilization), as well as geological storage (CO2 storage). However, technology readiness level differs largely across the process chain, in addition to other challenges, such as small scale, generally high initial capital and operating costs, and dispersed spatial distribution, which hinder the development of industrial clusters.
      Conclusion  It is important to promote CCUS integration projects to adapt to local conditions, based on a thorough understanding of Zhejiang's potential and source/sink conditions related to CCUS in key areas. Additionally, continuous investment in technological research and development is necessary, along with guarantees in terms of incentive mechanisms, policies, regulations, and business models.
  • [1]
    IPCC. Summary for policymakers [M]//MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, et al. Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Geneva, Switzerland: World Meteorological Organization, 2018.
    [2]
    IEA. Energy technology perspectives 2020-special report on carbon capture utilisation and storage: CCUS in clean energy transitions [R]. Paris, France: IEA, 2020.
    [3]
    张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学, 2021, 23(6): 70-80. DOI: 10.15302/J-SSCAE-2021.06.004.

    ZHANG X, LI Y, MA Q, et al. Development of carbon capture, utilization and storage technology in China [J]. Strategic study of CAE, 2021, 23(6): 70-80. DOI: 10.15302/J-SSCAE-2021.06.004.
    [4]
    张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望 [J]. 中国人口·资源与环境, 2021, 31(9): 29-33. DOI: 10.12062/cpre.20210827.

    ZHANG X, LI K, MA Q, et al. Orientation and prospect of CCUS development under carbon neutrality target [J]. China population, resources and environment, 2021, 31(9): 29-33. DOI: 10.12062/cpre.20210827.
    [5]
    刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择 [J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1-13. DOI: 10.13245/j.hust.220701.

    LIU F, GUAN J, QI Z F, et al. Technology route selection for carbon capture utilization and storage in coal-fired power plants [J]. Journal of Huazhong University of Science and Technology (natural science edition), 2022, 50(7): 1-13. DOI: 10.13245/j.hust.220701.
    [6]
    浙江省人民政府办公厅. 浙江省人民政府办公厅关于印发浙江省能源发展“十四五”规划的通知 [EB/OL].(2022-05-19) [2023-05-17]. https://www.zj.gov.cn/art/2022/5/19/art_1229655896_2407420.html.

    General Office of Zhejiang Provincial People's Government. Zhejiang Provincial People's Government General Office about printing and distributing Zhejiang notice on the 14th five-year plan for energy development of Zhejiang Province [EB/OL]. (2022-05-19) [2023-05-17]. https://www.zj.gov.cn/art/2022/5/19/art_1229655896_2407420.html.
    [7]
    ZHOU Y, ZHANG J L, WANG L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving [J]. Science, 2021, 373(6552): 315-320. DOI: 10.1126/science.aax5776.
    [8]
    ZHAO X L, HU X, HU G S, et al. Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine [J]. Journal of materials chemistry A, 2013, 1(20): 6208-6215. DOI: 10.1039/c3ta10651a.
    [9]
    HAN L, DENG G Y, LI Z, et al. Influences of syngas pretreatment on the performance and energy distribution in an IGCC power plant [J]. Chemical engineering research and design, 2018, 131: 117-126. DOI: 10.1016/j.cherd.2017.12.007.
    [10]
    WANG T, LIU F, GE K, et al. Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends [J]. Chemical engineering journal, 2017, 314: 123-131. DOI: 10.1016/j.cej.2016.12.129.
    [11]
    FANG M X, DONG W F, ZHANG Y, et al. Study on the chemical absorption main heat exchanger and process modification for 150 kt/y CCS demonstration project [J]. International journal of greenhouse gas control, 2021, 112: 103470. DOI: 10.1016/j.ijggc.2021.103470.
    [12]
    DONG W F, FANG M X, LIU Z J, et al. Study on chemical absroption absrober with polypropylene packing for Guohua Jinjie CCS demonstration project [J]. International journal of greenhouse gas control, 2022, 114: 103581. DOI: 10.1016/J.IJGGC.2022.103581.
    [13]
    LIU F, FANG M X, DONG W F, et al. Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation [J]. Applied energy, 2019, 233-234: 468-477. DOI: 10.1016/j.apenergy.2018.10.007.
    [14]
    ZHANG S H, SHEN Y, SHAO P J, et al. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas [J]. Environmental science & technology, 2018, 52(6): 3660-3668. DOI: 10.1021/acs.est.7b05936.
    [15]
    XU Y J, WANG T, YANG Q, et al. CO2 absorption performance in advanced water-lean diamine solvents [J]. Chemical engineering journal, 2021, 425: 131410. DOI: 10.1016/J.CEJ.2021.131410.
    [16]
    LIU F, SHEN Y, LI W, et al. Novel amino-functionalized ionic liquid/organic solvent with low viscosity for CO2 capture [J]. Environmental science & technology, 2020, 54(6): 3520-3529. DOI: 10.1021/acs.est.9b06717.
    [17]
    LUO X Y, GUO Y, WANG C M, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions [J]. Angewandte chemie international edition, 2014, 53(27): 7053-7057. DOI: 10.1002/anie.201400957.
    [18]
    LIU Y M, SHI J J, CHEN J, et al. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6 [J]. Microporous and mesoporous materials, 2010, 134(1-3): 16-21. DOI: 10.1016/j.micromeso.2010.05.002.
    [19]
    李莹莹, 陈新杰, 林坚, 等. 一种用于碳捕集的纤维素基多孔材料的制备方法和应用:CN202211476492.2 [P]. 2023-03-28.

    LI Y Y, CHEN X J, LIN J, et al. Preparation method and application of cellulose based polyporous material for carbon capture :CN202211476492.2 [P]. 2023-03-28.
    [20]
    ZHAO D C, KONG C L, CHEN L, et al. A molecular-templating strategy to polyamine-incorporated porous organic polymers for unprecedented CO2 capture and separation [J]. Science China materials, 2019, 62(3): 448-454. DOI: 10.1007/s40843-018-9333-6.
    [21]
    LIU N, CHENG J, HOU W, et al. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes [J]. Separation and purification technology, 2022, 282: 120007. DOI: 10.1016/j.seppur.2021.120007.
    [22]
    HAN L, WANG Q H, LUO Z Y, et al. H2 rich gas production via pressurized fluidized bed gasification of sawdust with in situ CO2 capture [J]. Applied energy, 2013, 109: 36-43. DOI: 10.1016/j.apenergy.2013.03.035.
    [23]
    董昊, 王涛, 侯成龙, 等. 直接空气捕碳CO2吸附剂综述 [J]. 浙江大学学报(工学版), 2022, 56(3): 462-475. DOI: 10.3785/j.issn.1008-973X.2022.03.005.

    DONG H, WANG T, HOU C L, et al. Review of CO2 direct air capture adsorbents [J]. Journal of Zhejiang University (engineering science), 2022, 56(3): 462-475. DOI: 10.3785/j.issn.1008-973X.2022.03.005.
    [24]
    CHENG J, ZHU Y X, ZHANG Z, et al. Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants [J]. Bioresource technology, 2019, 291: 121850. DOI: 10.1016/j.biortech.2019.121850.
    [25]
    HE Y X, CASSARINI C, LENS P N L. Enrichment of homoacetogens converting H2/CO2 into acids and ethanol and simultaneous methane production [J]. Engineering in life sciences, 2023, 23(2): e2200027. DOI: 10.1002/ELSC.202200027.
    [26]
    LIU J M, ZHANG H, ZENG A P, et al. Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system [J]. Nature communications, 2023, 14: 2772. DOI: 10.1038/s41467-023-38490-w.
    [27]
    WANG T, YI Z W, SONG J Y, et al. An industrial demonstration study on CO2 mineralization curing for concrete [J]. iScience, 2022, 25(5): 104261. DOI: 10.1016/j.isci.2022.104261.
    [28]
    LI X T, WANG J H, WU H B, et al. Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products [J]. Nano-micro letters, 2022, 14(1): 1-13. DOI: 10.1007/s40820-022-00879-5.
    [29]
    LIANG C, CHEN Y, WU M, et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon [J]. Nature communications, 2021, 12: 119. DOI: 10.1038/s41467-020-20380-0.
    [30]
    WANG T, CHEN L, LI B X, et al. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene [J]. ACS nano, 2022, 16(2): 2306-2318. DOI: 10.1021/acsnano.1c08505.
    [31]
    YANG G W, XU C K, WU G P, et al. Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin [J]. Journal of the American chemical society, 2021, 143(9): 3455-3465. DOI: 10.1021/jacs.0c12425.
    [32]
    李春峰, 姚泽伟, 彭希, 等. 中国海域盆地CO2地质封存选址方案与构造力学分析 [J]. 力学学报, 2023, 55(3): 719-731. DOI: 10.6052/0459-1879-22-384.

    LI C F, YAO Z W, PENG X, et al. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins [J]. Chinese journal of theoretical and applied mechanics, 2023, 55(3): 719-731. DOI: 10.6052/0459-1879-22-384.
    [33]
    金旸钧, 陈乃安, 潘志彦, 等. 地质封存条件下CO2在模拟盐水层溶液中的溶解度研究 [J]. 油气藏评价与开发, 2019, 9(3): 77-81,88. DOI: 10.13809/j.cnki.cn32-1825/te.2019.03.015.

    JIN Y J, CHEN N A, PAN Z Y, et al. Study on the solubility of CO2 in simulated saline solution under geological storage condition [J]. Petroleum reservoir evaluation and development, 2019, 9(3): 77-81,88. DOI: 10.13809/j.cnki.cn32-1825/te.2019.03.015.
  • Related Articles

    [1]WEI Xin, ZHANG Zongyi, YANG Liming. Key Issues of China's Carbon Pricing Mechanism Construction[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 57-62. DOI: 10.16516/j.ceec.2024.5.06
    [2]LUO Shasha, GUO Jingtao, CAI Yingqian, YU Xinmei. Analysis on Power Supply Structure Transformation Towards Carbon Neutrality in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 102-110. DOI: 10.16516/j.ceec.2024.4.10
    [3]LUO Haizhong, WU Dawei, FAN Yongchun, LI Pengchun, ZENG Shaoyan, LIN Haizhou. Development of CCUS Technology in the Context of Carbon Neutrality and Assessment of the Potential for Offshore Storage in Guangdong Province[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 1-13. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.001
    [4]HUANG Xuanxu, SHEN Wei, DING Guanghong. Research on Urban Carbon Neutrality and Hydrogen Energy Application Scenarios in Shanghai[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 11-22. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.002
    [5]SHAO Jianlin, ZHENG Minghui, GUO Chenghao, YAN Mengdi, XIA Ziqing, XU Hongpeng, WEI Shuzhou. Application Analysis of Energy Storage Technology for Coal-Fired Combined Heat and Power Generation Under Carbon Peak and Neutrality Goal[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 102-110. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.012
    [6]Shaokuan CAI. Challenges and Prospects for the Trends of Power Structure Adjustment Under the Goal of Carbon Peak and Neutrality[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002
    [7]Jinjian Zheng. Key Points of Energy Saving Report Compilation for New H-class Gas Turbine Project Under Carbon Neutralization Target[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(2): 25-30. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.004
    [8]Yuyan DUAN, Haizhong LUO, Haizhou LIN, Afeng WU, Guangyi DENG. Review of Relevant Policies on CCUS at Home and Abroad[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(S1): 28-31. DOI: 10.16516/j.gedi.issn2095-8676.2019.S1.006
    [9]Di ZHOU, Pengchun LI, Cuimei ZHANG. Offshore CO2-EOR: Worldwide Progress and a Preliminary Analysis on Its Potential in Offshore Sedimentary Basins off China[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 1-9. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.001
    [10]Lan CHEN, Xi LIANG, Di ZHOU. Potential Economic Opportunities of Developing a CCUS Industry in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 7-15. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.002

Catalog

    ZHANG Xiaolong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (412) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return