Advanced Search
LIU Shuwei, YANG Hechen, YU Xia, et al. Application and prospect of AI technology in power system development [J]. Southern energy construction, 2024, 11(5): 149-158. DOI: 10.16516/j.ceec.2024.5.16
Citation: LIU Shuwei, YANG Hechen, YU Xia, et al. Application and prospect of AI technology in power system development [J]. Southern energy construction, 2024, 11(5): 149-158. DOI: 10.16516/j.ceec.2024.5.16

Application and Prospect of AI Technology in Power System Development

More Information
  • Received Date: May 15, 2023
  • Revised Date: July 28, 2023
  • Available Online: September 29, 2024
  •   Introduction  In the face of energy scarcity and carbon reduction imperatives, the transition to clean energy centered on electricity is crucial. To achieve this, power system development must prioritize stability, automation and intelligence. Artificial intelligence (AI) technology is a key means to realize this goal.
      Method  This paper introduced the carbon emissions of domestic and foreign power systems at first, and pointed out the difficulties and feasible solutions for low-carbon development of the power system in China on this basis. Then, the application and prospect of AI technology in power system development were discussed.
      Result  In response to the transition to low-carbon and low-energy power systems, a series of low-carbon development routes, such as integration of capital and resources in the thermal power industry, low-carbon transition (such as the application of carbon capture technology), and promoting the consumption of and smooth replacement by clean energy, were proposed in this paper. It was also noted that AI technology will play a crucial role in automating, intelligentizing and optimizing power systems, with wide-ranging applications in power dispatching, relay protection, power equipment management, power system stability evaluation, and decision-making processes.
      Conclusion  As third-generation AI technology continues to evolve and fourth-generation AI technology emerges, the application of AI technology in the power system will become increasingly widespread.
  • [1]
    BOGDANOV D, RAM M, AGHAHOSSEINI A, et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability [J]. Energy, 2021, 227: 120467. DOI: 10.1016/j.energy.2021.120467.
    [2]
    蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002.

    CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002.
    [3]
    黄海泉,黄晓巍,姜望,等. 新型配电网分布式储能系统方案及配置研究综述 [J]. 南方能源建设,2024,11(4):42-53. DOI: 10.16516/j.ceec.2024.4.05.

    HUANG H Q, HUANG X W, JIANG W, et al. A review of distributed energy storage system solutions and configurations for new distribution grids [J]. Southern energy construction, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05.
    [4]
    IEA. Global methane tracker 2022 [R/OL]. (2022-02-23) [2023-05-16]. https://www.iea.org/reports/global-methane-tracker-2022.
    [5]
    舒印彪, 谢典, 赵良, 等. 碳中和目标下我国再电气化研究 [J]. 中国工程科学, 2022, 24(3): 195-204. DOI: 10.15302/J-SSCAE-2022.03.020.

    SHU Y B, XIE D, ZHAO L, et al. Re-electrification in China under the carbon neutrality goal [J]. Strategic study of CAE, 2022, 24(3): 195-204. DOI: 10.15302/J-SSCAE-2022.03.020.
    [6]
    王放放,杨鹏威,赵光金,等. 新型电力系统下火电机组灵活性运行技术发展及挑战 [J]. 发电技术, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079.

    WANG F F, YANG P W, ZHAO G J, et al. Development and challenge of flexible operation technology of thermal power units under new power system [J]. Power generation technology, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079.
    [7]
    于沛东, 郑印伟, 何晓迪, 等. “双碳”背景下火电企业转型升级与发展对策及路径 [J]. 能源研究与管理, 2022, 14(3): 20-25. DOI: 10.16056/j.2096-7705.2022.03.004.

    YU P D, ZHENG Y W, HE X D, et al. Countermeasures and paths for transformation and upgrading and development of thermal power enterprises under the background of "double carbon" [J]. Energy research and management, 2022, 14(3): 20-25. DOI: 10.16056/j.2096-7705.2022.03.004.
    [8]
    罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001.

    LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong Province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001.
    [9]
    袁春峰, 刘锴慧, 张帆, 等. 火电机组一次调频技术研究进展综述 [J]. 南方能源建设, 2022, 9(3): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.001.

    YUAN C F, LIU K H, ZHANG F, et al. Review on the research progress of primary frequency modulation technology for thermal power units [J]. Southern energy construction, 2022, 9(3): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.001.
    [10]
    卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战 [J]. 电力系统自动化, 2021, 45(9): 171-191. DOI: 10.7500/AEPS20200922001.

    ZHUO Z Y, ZHANG N, XIE X R, et al. Key technologies and developing challenges of power system with high proportion of renewable energy [J]. Automation of electric power systems, 2021, 45(9): 171-191. DOI: 10.7500/AEPS20200922001.
    [11]
    李维聪, 胡玉涛, 李伟. 基于大数据平台的智能电厂数据及系统集成方案研究 [J]. 南方能源建设, 2022, 9(4): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.018.

    LI W C, HU Y T, LI W. Research on data and system integration of intelligent power plant based on big data platform [J]. Southern energy construction, 2022, 9(4): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.018.
    [12]
    GAO D W, WANG Q, ZHANG F, et al. Application of AI techniques in monitoring and operation of power systems [J]. Frontiers in energy, 2019, 13(1): 71-85. DOI: 10.1007/s11708-018-0589-4.
    [13]
    中华人民共和国国务院. 新一代人工智能发展规划 [EB/OL]. (2017-07-20) [2022-03-05]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

    The State Council of the People's Republic of China. Artificial intelligence [EB/OL]. (2017-07-20) [2022-03-05]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
    [14]
    姚建国, 余涛, 杨胜春, 等. 提升电网调度中人工智能可用性的混合增强智能知识演化技术 [J]. 电力系统自动化, 2022, 46(20): 1-12. DOI: 10.7500/AEPS20220110004.

    YAO J G, YU T, YANG S C, et al. Knowledge evolution technology based on hybrid-augmented intelligence for improving practicability of artificial intelligence in power grid dispatch [J]. Automation of electric power systems, 2022, 46(20): 1-12. DOI: 10.7500/AEPS20220110004.
    [15]
    王川, 张杰, 李伟, 等. 人工智能技术在电力调度自动化系统中的应用分析 [J]. 科技创新与应用, 2021, 11(12): 149-151.

    WANG C, ZHANG J, LI W, et al. Application analysis of artificial intelligence technology in power dispatching automation system [J]. Technology innovation and application, 2021, 11(12): 149-151.
    [16]
    CAI G L, WANG G C, GUAN C L, et al. Based on clustering algorithm expert system of self-learning rule base [C]//2022 34th Chinese Control and Decision Conference, Hefei, China, August 15-17, 2022. Hefei: IEEE, 2022: 1563-1566. DOI: 10.1109/CCDC55256.2022.10033463.
    [17]
    袁丁, 郝威, 张可可, 等. AI技术在电力调度自动化中的应用 [J]. 电子技术与软件工程, 2021(22): 119-121.

    YUAN D, HAO W, ZHANG K K, et al. Application of AI technology in power dispatching automation [J]. Electronic technology and software engineering, 2021(22): 119-121.
    [18]
    WANG X L, LU M X, CAI D D, et al. The applications of information visualization in power systems [J]. Applied mechanics and materials, 2014, 721: 703-706. DOI: 10.4028/www.scientific.net/AMM.721.703.
    [19]
    ZHU G R, ZHANG Y H, CHENG F, et al. Research on prediction of electric quantity based on artificial neural network [J]. IOP conference series: materials science and engineering, 2018, 452(3): 032110. DOI: 10.1088/1757-899X/452/3/032110.
    [20]
    赵晋泉, 夏雪, 徐春雷, 等. 新一代人工智能技术在电力系统调度运行中的应用评述 [J]. 电力系统自动化, 2020, 44(24): 1-10. DOI: 10.7500/AEPS20200720009.

    ZHAO J Q, XIA X, XU C L, et al. Review on application of new generation artificial intelligence technology in power system dispatching and operation [J]. Automation of electric power systems, 2020, 44(24): 1-10. DOI: 10.7500/AEPS20200720009.
    [21]
    BARRETO N E M, RODRIGUES R, SCHUMACHER R, et al. Artificial neural network approach for fault detection and identification in power systems with wide area measurement systems [J]. Journal of control, automation and electrical systems, 2021, 32(6): 1617-1626. DOI: 10.1007/s40313-021-00785-y.
    [22]
    ZHU Z W. Research on the protection of power system based on artificial intelligence [J]. Journal of residuals science & technology, 2016, 13(5): 413-422.
    [23]
    ZHAO X Y, ZHANG X Y. Artificial intelligence applications in power system [C]//Proceedings of the 2016 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). 2016: 158-161.
    [24]
    周元哲. 电力一次设备在线监测与故障诊断 [D]. 济南: 山东大学, 2016.

    ZHOU Y Z. On line monitoring and fault diagnosis of power primary equipment [D]. Ji'nan: Shandong University, 2016.
    [25]
    叶利军. 基于人工智能的通信自动控制系统 [J]. 自动化技术与应用, 2022, 41(9): 36-39. DOI: 10.20033/j.1003-7241(2022)09-0036-04.

    YE L J. Research on communication automatic control system based on artificial intelligence [J]. Techniques of automation and applications, 2022, 41(9): 36-39. DOI: 10.20033/j.1003-7241(2022)09-0036-04.
    [26]
    陈学伟, 王伟, 田新成, 等. 基于AI技术的电力生产管理自动化系统研究 [J]. 电工技术, 2022(16): 24-26,29. DOI: 10.19768/j.cnki.dgjs.2022.16.007.

    CHEN X W, WANG W, TIAN X C, et al. Research on automation system of electric power production management based on AI technology [J]. Electric engineering, 2022(16): 24-26,29. DOI: 10.19768/j.cnki.dgjs.2022.16.007.
    [27]
    WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [J]. Applied energy, 2021, 292: 116851. DOI: 10.1016/j.apenergy.2021.116851.
    [28]
    ZHU L P, LU C, DONG Z Y, et al. Imbalance learning machine-based power system short-term voltage stability assessment [J]. IEEE transactions on industrial informatics, 2017, 13(5): 2533-2543. DOI: 10.1109/TII.2017.2696534.
    [29]
    LI N, LI B L, GAO L. Transient stability assessment of power system based on XGBoost and factorization machine [J]. IEEE access, 2020, 8: 28403-28414. DOI: 10.1109/ACCESS.2020.2969446.
    [30]
    杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述 [J]. 电力系统自动化, 2022, 46(22): 200-223. DOI: 10.7500/AEPS20220114001.

    YANG B, CHEN Y J, YAO W, et al. Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology [J]. Automation of electric power systems, 2022, 46(22): 200-223. DOI: 10.7500/AEPS20220114001.
    [31]
    郭梦轩, 管霖, 苏寅生, 等. 基于改进边图卷积网络的电力系统小干扰稳定评估模型 [J]. 电网技术, 2022, 46(6): 2095-2103. DOI: 10.13335/j.1000-3673.pst.2021.0855.

    GUO M X, GUAN L, SU Y S, et al. Small-signal stability assessment model based on improved edge graph convolutional networks of power system [J]. Power system technology, 2022, 46(6): 2095-2103. DOI: 10.13335/j.1000-3673.pst.2021.0855.
    [32]
    李常刚, 李华瑞, 刘玉田, 等. 大电网动态安全风险智能评估系统 [J]. 电力系统自动化, 2019, 43(22): 67-75. DOI: 10.7500/AEPS20190507003.

    LI C G, LI H R, LIU Y T, et al. Intelligent assessment system for dynamic security risk of large-scale power grid [J]. Automation of electric power systems, 2019, 43(22): 67-75. DOI: 10.7500/AEPS20190507003.
    [33]
    XIE J, SUN W. A transfer and deep learning-based method for online frequency stability assessment and control [J]. IEEE access, 2021, 9: 75712-75721. DOI: 10.1109/ACCESS.2021.3082001.
    [34]
    王海超. 基于深度学习的智能电网电压稳定性评估研究 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001275.

    WANG H C. Smart grid voltage stability evaluation research based on deep learning [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001275.
    [35]
    朱林, 张健, 陈达, 等. 面向暂态电压稳定评估的卷积神经网络输入特征构建方法 [J]. 电力系统自动化, 2022, 46(1): 85-93. DOI: 10.7500/AEPS20201126003.

    ZHU L, ZHANG J, CHEN D, et al. Construction method for input features of convolutional neural network for transient voltage stability assessment [J]. Automation of electric power systems, 2022, 46(1): 85-93. DOI: 10.7500/AEPS20201126003.
    [36]
    张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施 [J]. 中国电机工程学报, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425.

    ZHANG Z Y, ZHANG N, DU E S, et al. Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics [J]. Proceedings of the CSEE, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425.
    [37]
    马宁宁, 谢小荣, 唐健, 等. “双高”电力系统宽频振荡广域监测与预警系统 [J]. 清华大学学报(自然科学版), 2021, 61(5): 457-464. DOI: 10.16511/j.cnki.qhdxxb.2021.21.014.

    MA N N, XIE X R, TANG J, et al. Wide-area measurement and early warning system for wide-band oscillations in "double-high" power systems [J]. Journal of Tsinghua University (science and technology), 2021, 61(5): 457-464. DOI: 10.16511/j.cnki.qhdxxb.2021.21.014.
    [38]
    周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望 [J]. 电力系统自动化, 2019, 43(4): 180-191. DOI: 10.7500/AEPS20180323002.

    ZHOU N C, LIAO J Q, WANG Q G, et al. Analysis and prospect of deep learning application in smart grid [J]. Automation of electric power systems, 2019, 43(4): 180-191. DOI: 10.7500/AEPS20180323002.
    [39]
    HUANG Q H, HUANG R K, HAO W T, et al. Adaptive power system emergency control using deep reinforcement learning [J]. IEEE transactions on smart grid, 2020, 11(2): 1171-1182. DOI: 10.1109/TSG.2019.2933191.
    [40]
    冯双, 陈佳宁, 汤奕, 等. 基于SPWVD图像和深度迁移学习的强迫振荡源定位方法 [J]. 电力系统自动化, 2020, 44(17): 78-87. DOI: 10.7500/AEPS20191225001.

    FENG S, CHEN J N, TANG Y, et al. Location method of forced oscillation source based on SPWVD image and deep transfer learning [J]. Automation of electric power systems, 2020, 44(17): 78-87. DOI: 10.7500/AEPS20191225001.
    [41]
    孙润稼, 刘玉田. 基于深度学习和蒙特卡洛树搜索的机组恢复在线决策 [J]. 电力系统自动化, 2018, 42(14): 40-47. DOI: 10.7500/AEPS20170930011.

    SUN R J, LIU Y T. Online decision-making for generator start-up based on deep learning and Monte Carlo tree search [J]. Automation of electric power systems, 2018, 42(14): 40-47. DOI: 10.7500/AEPS20170930011.
    [42]
    周艳真, 吴俊勇, 冀鲁豫, 等. 基于两阶段支持向量机的电力系统暂态稳定预测及预防控制 [J]. 中国电机工程学报, 2018, 38(1): 137-147. DOI: 10.13334/j.0258-8013.pcsee.162072.

    ZHOU Y Z, WU J Y, JI L Y, et al. Two-stage support vector machines for transient stability prediction and preventive control of power systems [J]. Proceedings of the CSEE, 2018, 38(1): 137-147. DOI: 10.13334/j.0258-8013.pcsee.162072.
    [43]
    田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法 [J]. 电力系统保护与控制, 2020, 48(18): 1-8. DOI: 10.19783/j.cnki.pspc.191310.

    TIAN F, ZHOU X X, SHI D Y, et al. A preventive control method of power system transient stability based on a convolutional neural network [J]. Power system protection and control, 2020, 48(18): 1-8. DOI: 10.19783/j.cnki.pspc.191310.
    [44]
    高盛,许沛华,陈正洪. 基于机器学习的风电场风速多模式集合预报 [J]. 南方能源建设,2024,11(1):85-95. DOI: 10.16516/ j.ceec.2024.1.09.

    GAO S, XU P H, CHEN Z H. Wind speed multi-mode ensemble forecasting for wind farms based on machine learning [J]. Southern energy construction, 2024, 11(1): 85-95. DOI: 10.16516/ j.ceec.2024.1.09.
    [45]
    梁凌宇,赵翔宇,黄文琦,等. 融合多类人工智能模型的电力系统负荷短期预测技术研究 [J]. 电力大数据,2022,25(6):16-23. DOI: 10.19317/j.cnki.1008-083x.2022.06.004.

    LIANG L Y, ZHAO X Y, HUANG W Q, et al. Research on power system load short-term forecasting technology integrating multiple artificial intelligence models [J]. Power systems and big data,2022,25(6):16-23. DOI: 10.19317/j.cnki.1008-083x.2022.06.004.
  • Related Articles

    [1]GU Jingda, BAI Xiaohui, LI Wei, WANG Yafeng, SONG Baotong. Analysis on Green and Low Carbon Technologies for New Power System Substations[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 111-117. DOI: 10.16516/j.ceec.2024.4.11
    [2]LUO Shasha, GUO Jingtao, CAI Yingqian, YU Xinmei. Analysis on Power Supply Structure Transformation Towards Carbon Neutrality in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 102-110. DOI: 10.16516/j.ceec.2024.4.10
    [3]ZHANG Dongqing, ZHANG Guohua, XU Lingling, GAO Shengfu. Development Application and Dynamic Characteristics of Synchronous Condenser in Electric Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 31-41. DOI: 10.16516/j.ceec.2024.4.04
    [4]TIAN Hua, ZHANG Wei, FENG Bin, WANG Wei, MENG Xiaowei, QIU Tao. Design and Development of 5G+ Robot Autonomous Patrol Inspection System in Intelligent Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 34-42. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.004
    [5]Shaokuan CAI. Discussion on Energy Storage Solutions Under the New Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S1): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.003
    [6]Shaokuan CAI. Challenges and Prospects for the Trends of Power Structure Adjustment Under the Goal of Carbon Peak and Neutrality[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002
    [7]LIU Zhiyong, ZHAO Xiaodan, QI Hongchang, LI Yanfei. Prospect of UAV Power Inspection Technology in New Era[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.001
    [8]DENG Xiaozhi. Research and Application of ASON Intelligent Optical Network in the Power System Service Protection and Restoration[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(S1): 89-96. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.017
    [9]HUANG Yu. Inspiration and Situation of Domestic and International Development of Electric Power Direct Exchange[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 1-4. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.001
    [10]Yanghua LIU, Shunjiang LIN. Comprehensive Estimation Research on Offshore Wind Farm Within Electric Power Market[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 34-37. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.006
  • Cited by

    Periodical cited type(3)

    1. 张超,唐捷. 优化工业人工智能在低碳制造中的应用. 人民论坛·学术前沿. 2025(02): 63-71 .
    2. 王朋,张迪,张勇军,甘露,曾梦妤,秦绍基,刘林. 新型电力系统数智化关键技术应用研究与展望. 电力系统保护与控制. 2025(06): 175-187 .
    3. 孙鑫,尹刚,吴晓玲. 基于AI电流指纹技术的电力系统智能化监控与管理. 科技视界. 2024(30): 82-84 .

    Other cited types(0)

Catalog

    WU Qirong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (2241) PDF downloads (134) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return