Advanced Search
HUANG Sui, CAI Yanfeng, WANG Jun, et al. Applicability analysis of sea surface wind field data for Yangjiang offshore wind farm in Guangdong Province [J]. Southern energy construction, 2024, 11(6): 111-123. DOI: 10.16516/j.ceec.2024.6.12
Citation: HUANG Sui, CAI Yanfeng, WANG Jun, et al. Applicability analysis of sea surface wind field data for Yangjiang offshore wind farm in Guangdong Province [J]. Southern energy construction, 2024, 11(6): 111-123. DOI: 10.16516/j.ceec.2024.6.12

Applicability Analysis of Sea Surface Wind Field Data for Yangjiang Offshore Wind Farm in Guangdong Province

More Information
  • Received Date: September 10, 2023
  • Revised Date: October 22, 2023
  • Available Online: May 16, 2024
  •   Introduction  In order to test the applicability of sea surface wind field data set in Yangjiang offshore wind farm area, this paper tests and evaluates the 10 m wind field of daily gridded advanced scatterometer (DASCAT), European centre for medium-range weather forecasts reanalysis v5 (ERA5) and final reanalysis data (FNL).
      Method  The research was based on the 10 m wind fields at four sites in the Yangjiang offshore wind farm area in Guangdong province.
      Result  The results demonstrate five pionts: (1) The wind speed correlations are above 0.8, with ERA5 the highest. The RMSE of wind speed are within 2.6 m/s, with DASCAT being the best in SWZ and ERA5 being the best in DWZ. Both FNL and ERA5 show significant underestimation of wind speed in SWZ, while DASCAT has smaller mean wind speed deviation than those of FNL and ERA5, and ERA5 mean wind speed is closer to those of observation. (2) The wind direction correlation reaches more than 0.75, with ERA5 being the highest in SWZ and FNL being the highest in DWZ. The RMSE of wind direction are within 35°, and ERA5 errors are the minimum. However, DASCAT and FNL are both closer to the observed predominant wind direction. (3) The statistics of the RMSE of wind speed in each wind speed period show that FNL is the minimum in the low wind speed period while DASCAT is the minimum in the medium and high wind speed periods in SWZ. ERA5 is the minimum in all wind speed period in DWZ. In both SWZ and DWZ, ERA5 has the highest wind speed correlation in both the low and medium wind speed periods, and FNL has the highest wind speed correlation in the high wind speed period. (4) The monthly wind speed errors of DASCAT and ERA5 are small and distributed relatively close to each other in SWZ, with peaks in April-May and October; ERA5 errors are smallest in DWZ, with a peak in July and a trough in December-January of the following year. (5) The distribution characteristics of the multi-year average wind speed for 10 m show that the wind speed increases from north to south and from west to east, and the wind speed gradient is large in SWZ.
      Conclusion  Overall, the 10 m sea surface wind field data set of ERA5 performs better in the study area, and the deficiency of its systematic low mean wind speed can be corrected by DASCAT.
  • [1]
    HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis [J]. Quarterly journal of the royal meteorological society, 2020, 146(730): 1999-2049. DOI: 10.1002/qj.3803.
    [2]
    TAREK M, BRISSETTE F P, ARSENAULT R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America [J]. Hydrology and earth system sciences, 2020, 24(5): 2527-2544. DOI: 10.5194/hess-24-2527-2020.
    [3]
    VANELLA D, LONGO-MINNOLO G, BELFIORE O R, et al. Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy [J]. Journal of hydrology:regional studies, 2022, 42: 101182. DOI: 10.1016/j.ejrh.2022.101182.
    [4]
    CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al. WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal [J]. Applied energy, 2014, 117: 116-126. DOI: 10.1016/j.apenergy.2013.12.001.
    [5]
    李艳兵, 黄思训, 翟景秋. 卫星反演风场进展概述 [J]. 气象科学, 2009, 29(2): 277-284. DOI: 10.3969/j.issn.1009-0827.2009.02.022.

    LI Y B, HUANG S X, ZHAI J Q. A review of satellite wind retrieval technologies [J]. Journal of the meteorological sciences, 2009, 29(2): 277-284. DOI: 10.3969/j.issn.1009-0827.2009.02.022.
    [6]
    潘旸, 宇婧婧, 廖捷, 等. 地面和卫星降水产品对台风莫拉克降水监测能力的对比分析 [J]. 气象, 2011, 37(5): 564-570. DOI: 10.7519/j.issn.1000-0526.2011.5.007.

    PAN Y, YU J J, LIAO J, et al. Assessment on the rainfall monitoring of typhoon Morakot by ground-gauged and satellite precipitation products [J]. Meteorological monthly, 2011, 37(5): 564-570. DOI: 10.7519/j.issn.1000-0526.2011.5.007.
    [7]
    谢小萍, 魏建苏, 黄亮. ASCAT近岸风场产品与近岸浮标观测风场对比 [J]. 应用气象学报, 2014, 25(4): 445-453. DOI: 10.3969/j.issn.1001-7313.2014.04.007.

    XIE X P, WEI J S, HUANG L. Evaluation of ASCAT coastal wind product using nearshore buoy data [J]. Journal of applied meteorological science, 2014, 25(4): 445-453. DOI: 10.3969/j.issn.1001-7313.2014.04.007.
    [8]
    渠鸿宇, 黄彬, 赵伟, 等. HRCLDAS-V1.0和ERA5海面风场对比评估分析 [J]. 热带气象学报, 2022, 38(4): 569-579. DOI: 10.16032/j.issn.1004-4965.2022.051.

    QU H Y, HUANG B, ZHAO W, et al. Comparison and evaluation of HRCLDAS-V1.0 and ERA5 sea-surface wind fields [J]. Journal of tropical meteorology, 2022, 38(4): 569-579. DOI: 10.16032/j.issn.1004-4965.2022.051.
    [9]
    陈君芝, 施晓晖, 温敏. ERA5再分析10 m风速数据在“两洋一海”的适用性分析 [J]. 气象, 2023, 49(1): 39-51. DOI: 10.7519/j.issn.1000-0526.2022.072301.

    CHEN J Z, SHI X H, WEN M. Applicability of ERA5 surface wind speed data in the region of "two oceans and one sea" [J]. Meteorological monthly, 2023, 49(1): 39-51. DOI: 10.7519/j.issn.1000-0526.2022.072301.
    [10]
    刘解明, 熊学军, 宫庆龙, 等. 4种表层风场资料在北半球海域的适用性评估 [J]. 海洋科学进展, 2020, 38(1): 38-50. DOI: 10.3969/j.issn.1671-6647.2020.01.005.

    LIU X M, XIONG X J, GONG Q L, et al. Applicability evaluation of four surface wind products in the northern hemisphere sea area [J]. Advances in marine science, 2020, 38(1): 38-50. DOI: 10.3969/j.issn.1671-6647.2020.01.005.
    [11]
    SIVAREDDY S, RAVICHANDRAN M, GIRISHKUMAR M S. Evaluation of ASCAT-Based daily gridded winds in the tropical Indian ocean [J]. Journal of atmospheric and oceanic technology, 2013, 30(7): 1371-1381. DOI: 10.1175/JTECH-D-12-00227.1.
    [12]
    PARK J, KIM D W, JO Y H, et al. Accuracy evaluation of daily-gridded ASCAT satellite data around the Korean Peninsula [J]. Korean journal of remote sensing, 2018, 34(2-1): 213-225. DOI: 10.7780/kjrs.2018.34.2.1.5.
    [13]
    张增海, 曹越男, 刘涛, 等. ASCAT散射计风场在我国近海的初步检验与应用 [J]. 气象, 2014, 40(4): 473-481. DOI: 10.7519/j.issn.1000-0526.2014.04.010.

    ZHANG Z H, CAO Y N, LIU T, et al. Preliminary validation and application of ASCAT scatterometer retrieved winds over China offshore seas [J]. Meteorological monthly, 2014, 40(4): 473-481. DOI: 10.7519/j.issn.1000-0526.2014.04.010.
    [14]
    高留喜, 朱蓉, 常蕊, 等. QuikSCAT和ASCAT卫星反演风场在中国南海北部的适用性研究 [J]. 气象, 2014, 40(10): 1240-1247. DOI: 10.7519/j.issn.10000526.2014.10.008.

    GAO L X, ZHU R, CHANG R, et al. Applicability research using QuikSCAT and ASCAT satellite inversion wind data in the northern part of South China Sea [J]. Meteorological monthly, 2014, 40(10): 1240-1247. DOI: 10.7519/j.issn.10000526.2014.10.008.
    [15]
    柳婧, 宋晓姜, 王彰贵. 中国近海ASCAT和ERA-Interim风场资料的评估 [J]. 海洋预报, 2019, 36(1): 10-19. DOI: 10.11737/j.issn.1003-0239.2019.01.002.

    LIU J, SONG X J, WANG Z G. Evaluation of ASCAT and ERA-Interim wind data over China offshore seas [J]. Marine forecasts, 2019, 36(1): 10-19. DOI: 10.11737/j.issn.1003-0239.2019.01.002.
    [16]
    郭春迓, 钟水新, 胡亮, 等. ASCAT反演风场与华南及南海站点观测对比分析 [J]. 热带气象学报, 2020, 36(4): 508-517. DOI: 10.16032/j.issn.1004-4965.2020.047.

    GUO C Y, ZHONG S X, HU L, et al. Comparative analysis of ASCAT inversion winds and AWS observations in the South China Sea [J]. Journal of tropical meteorology, 2020, 36(4): 508-517. DOI: 10.16032/j.issn.1004-4965.2020.047.
    [17]
    国家市场监督管理总局, 中国国家标准化管理委员会. 风电场气象观测资料审核、插补与订正技术规范: GB/T 37523—2019 [S]. 北京: 中国标准出版社, 2019.

    State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Specification for data inspection and correction of wind power plant meteorological observation: GB/T 37523—2019 [S]. Beijing: Standards Press of China, 2019.
    [18]
    BENTAMY A, FILLON D C. Gridded surface wind fields from Metop/ASCAT measurements [J]. International journal of remote sensing, 2012, 33(6): 1729-1754. DOI: 10.1080/01431161.2011.600348.
    [19]
    International Electrotechnical Commission. Wind energy generation systems-Part 12-1: power performance measurements of electricity producing wind turbines: IEC 61400-12-1: 2022 [S]. Geneva: Institute of Electrical and Electronics Engineers, 2022.
    [20]
    窦芳丽, 商建, 郭杨, 等. 卫星遥感海面风技术现状及应用进展 [J]. 气象科技进展, 2017, 7(4): 6-11. DOI: 10.3969/j.issn.2095-1973.2017.04.001.

    DOU F L, SHANG J, GUO Y, et al. Satellite remote sensing of sea surface winds: technique status and application progress [J]. Advances in meteorological science & technology, 2017, 7(4): 6-11. DOI: 10.3969/j.issn.2095-1973.2017.04.001.
  • Related Articles

    [1]LI Sheng, GE Wenpeng, WU Jiacheng, QU Chunming, SUN Rui. Applicability Evaluation of Wind Turbine Wake Models[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(1): 42-53. DOI: 10.16516/j.ceec.2024.1.05
    [2]NIU Yongchao, CHENG Yansen, CHENG Haichao, LI Xuehai. Feasibility Research of Underwater Application of Fuel Cell[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 128-134. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.014
    [3]NIU Haifeng, LI Xianghui, LIANG Feng, LI Ya, ZHANG Zijian. Research and Application of Geotechnical Data Consistency in Marine Site Exploration[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 124-132. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.016
    [4]CHEN Feng, XIAO Zhijun. Simplified Calculation Method and Applicability of Anchor Depth[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 112-117. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.014
    [5]LIANG Zhanpeng, XIANG Kui, LI Hua, ZHU Guangtao. Applicability Analysis of Energy Storage Techniques for CFETR Fusion Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.007
    [6]HU Chuanpeng. Research on the Applicability of Simplified Dynamic Calculation for Equipment Foundations on the Ground of Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 133-139. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.024
    [7]Fei LI. Reliability Application and Research of Domestic DCS System in Ultra-supercritical Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(3): 85-90. DOI: 10.16516/j.gedi.issn2095-8676.2016.03.018
    [8]ZENG Ruibi, FAN Shaoyou. Application and Research of the Prefabricated Building for Substation[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 239-243. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.053
    [9]Chen Juanmin. ZY-3 Orthophoto and DEM Data Process andIts Feasibility Analysis in Electric Power Engineering[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 207-211,229. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.046
    [10]HUANG Weifang, JIN Xin, WEN An, WEI Chengzhi, LIU Nian. PTN Security Capability and Applicability Analysis of Wide Area Protection and Control System[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 161-164. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.036
  • Cited by

    Periodical cited type(1)

    1. 罗必雄,胡均亮,杨亚军,任宗栋,何亚东. 计及纵向扰动稳定的高空风电系统建模与稳定运行控制方法. 南方能源建设. 2025(01): 1-11 . 本站查看

    Other cited types(0)

Catalog

    ZHOU Chuan, zhouchuan@gedi.com.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (291) PDF downloads (24) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return