Advanced Search
Zuogang GUO, Guangyi DENG, Yongchun FAN, Guangming CHEN. Performance Analysis of Compressed Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 38-44. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.007
Citation: Zuogang GUO, Guangyi DENG, Yongchun FAN, Guangming CHEN. Performance Analysis of Compressed Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 38-44. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.007

Performance Analysis of Compressed Air Energy Storage System

More Information
  • Received Date: August 26, 2014
  • Compressed air energy storage technology (CAES) and pumped hydro technology are two typical energy storage technologies that have the capacity of large scale electricity storage. In this paper, four CAES systems are designed. The evolution trend of compressed air pressure and temperature in air tank as well as the characteristics for different CAES systems are discussed according to the first law of thermodynamics. It indicates that there is an obvious temperature increase during air charging process under poor heat transfer conditions. The temperature increase value is about 22.46 ℃ for 200 m3 tank when it is charged to 10 MPa with a mass flow of 1.0 kg/s. In terms of CAES system property, their heat rates are between 4 100 kJ/kW·h and 4 200 kJ/kW·h, and their energy conversion efficiencies are between 52.30% and 56.33%. As for the parameter of energy conversion efficiency and total electricity output capacity, CAES systems with better air tank heat transfer conditions have higher values.
  • [1]
    国家能源局.国家能源科技“十二五”规划(2011-2015)[R].2011.

    National Energy Administration. Energy Technology Strategy of China(2011-2015)[R].2011.
    [2]
    李俊峰.2012中国风电发展报[R].北京:中国环境科学出版社,2012.

    LI Junfeng. China Wind Power Development Report 2012[R]. Beijing: China Environmental Press, 2012.
    [3]
    陈俊,司红建,周荣斌.抽水蓄能机组SFC系统保护关键技术[J].电力自动化设备,2013,33(8):167-171.

    CHEN Jun, SI Hongjian, ZHOU Rongbin. Design of Intelligent High-voltage and Variable-frequency Power Source[J]. Electric Power Automation Equipment,2013,33(8):167-171.
    [4]
    徐飞,陈磊,金和平.抽水蓄能电站与风电的联合优化运行建模及应用分析[J].电力系统自动化,2013,37(1):149-154.

    XU Fei, CHEN Lei, JIN Heping. Modeling and Application Analysis of Optimal Joint Operation of Pumped Storage Power Station and Wind Power[J]. Automation of Electric Power Systems, 2013,37(1):149-154.
    [5]
    戴兴建,邓占峰,刘刚.大容量先进飞轮储能电源技术发展状况[J].电工技术学报,2011,26(7):133-140.

    DAI Xingjian, DENG Zhanfeng, LIU Gang. Review on Advanced Flywheel Energy Storage System With Large Scale[J]. Transactions of China Electro-technical Society,2011,26(7):133-140.
    [6]
    张华民,张宇,刘宗浩.液流储能电池技术研究进展[J].化学进展,2009,21(11):2333-2340.

    ZHANG uamin, ZHANG Yu, LIU Zonghao. Redox Flow Battery Technology[J]. Progress in Chemistry,2009,21(11):2333-2340.
    [7]
    徐冬清,范永生,刘平.全钒液流电池复合材料双极板研究[J].高校化学工程学报,2011,25(2):308-313.

    XU Dongqing, FAN Yongsheng, LIU Ping, Research of Composite Bipolar Plate Used for Vanadium Redox Flow Battery[J]. Journal of Chemical Engineering of Chinese Universities,2011.25(2):308-313.
    [8]
    CHEN H,CONG T,YANG W. Progress in Electrical Energy Storage System:A Critical Review[J].Progress in Natural Science,2009. 19(3): 291-312.
    [9]
    张新敬,陈海生,刘金超.压缩空气储能技术研究进展[J].储能科学与技术,2012,1(1):26-40.

    ZHANG Xinjing, CHEN Haisheng, LIU Jinchao. Research Progress in Compressed Air Energy Storage System: A Review[J]. Energy Storage Science and Technology,2012,1(1):26-40.
    [10]
    翟昕,俞小莉,刘忠民.压缩空气-燃油混合动力的研究[J].浙江大学学报(工学版),2006,40(4): 610-614.

    ZHAI Xin, YU Xiaoli, LIU Zhongmin. Research on Hybrid of Compressed-air and Fuel[J]. Journal of Zhejiang University(Engineering Science),2006,40(4): 610-614.
    [11]
    王雷,李道飞,叶锦. 车用发动机压缩空气制动循环特性[J]. 浙江大学学报(工学版), 2014, 48(1) 56-62.

    WANG Lei, LI Daofei, YE Jin. Performances of Vehicle Engine Air Compression Braking[J]. Journal of Zhejiang University(Engineering Science),2014, 48(1): 56-62.
    [12]
    CROTOGINO F,MOHMEYER K,SCHARF R.Huntorf CAES: More than 20 Years of Successful Operation [C].Spring 2001 Meeting, Florida, USA, 2001.
    [13]
    MACK D.Something New in Power Technology[J].Potentials, 1993. 12(2): 40-42.
    [14]
    California Public Utilities Commission. Decision Approving Application of Pacific Gas and Electric Company to Recover Smart Grid Costs Relating to a Compressed Air Energy Storage Demonstration Project[EB/OL] (2009-09-29)[2014-08-27]. http://docs.cpuc.ca.gov/word_pdf/AGENDA_DECISION/112582.pdf
    [15]
    MADRIGAL A. Bottled Wind Could be as Constant as Coal[EB/OL]. (2010-03-09)[2014-08-27].http://www.wired.com/wiredscience/2010/03/compressed-air-plants/
    [16]
    徐玉杰,陈海生,刘佳.风光互补的压缩空气储能与发电一体化系统特性分析[J].中国电机工程学报,2012,32(20):88-95.

    XU Yujie, CHEN Haisheng, LIU Jia. Performance Analysis on an Integrated System of Compressed Air Energy Storage and Electricity Production with Wind-solar Complementary Method[J]. Proceedings of the CSEE, 2012,32(20):88-95.
    [17]
    SUNDARARAGAVAN S,BAKER E.Evaluating Energy Storage Technologies for Wind Power Integration[J]. Solar Energy, 2012,86(9): 2707-2717.
    [18]
    LUND H,SALGI G.The Role of Compressed Air Energy Storage (CAES) in Future Sustainable Energy Systems[J]. Energy Conversion and Management,2009,50(5):1172-1179.
    [19]
    刘文毅.压缩空气蓄能(CAES)电站热力性能仿真分析[D].北京:华北电力大学,2008.

    LIU Wenyi. Thermal Performance and Simulation Analysis of Compressed Air Energy Storage (CAES)[D]. Beijing: North China Electric Power University, 2008.
    [20]
    刘文毅,杨勇平,宋之平.压缩空气蓄能(CAES)系统集成及性能计算[J]. 工程热物理学报,2005,26(增刊1):25-28.

    LIU Wenyi, YANG Yongping, SONG Zhiping. Optimization and Performance Simulation of Different CAES Systems[J]. Journal of Engineering Thermophysics,2005,26(Supp.1):25-28.
    [21]
    杨科,张远,李雪梅.先进绝热压缩空气储能系统的设计计算[J].工程热物理学报,2012,33(5):725-728.

    YANG Ke, ZHANG Yuan, LI Xuemei. Design and Calculation of Advanced Adiabatic Compressed Air Energy Storage System[J]. Journal of Engineering Thermophysics,2012,33(5):725-728.
    [22]
    刘佳,夏红德,陈海生.新型液化空气储能技术及其在风电领域的应用[J].工程热物理学报,2010,31(12):1993-1996.

    LIU Jia, XIA Hongde, CHEN Haisheng. A Novel Energy Storage Technology Based on Liquid Air and Its Application in Wind Power[J]. Journal of Engineering Thermophysics,2010,31(12):1993-1996.
  • Related Articles

    [1]WANG Yuxuan, ZHANG Yufeng, LI Liansheng. Simulation and Dynamic Analysis of Small Advanced Insulated Compressed Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 145-157. DOI: 10.16516/j.ceec.2024-173
    [2]Peng Gang, LIU Shuwei, WU Qirong, Wang Wen, Li Fang. Energy Efficiency Analysis of Carbon Capture Systems Using Chemical Absorption Based on the Second Law of Thermodynamics[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2025-003
    [3]ZHENG Kaiyun, CHI Jiecheng, ZHANG Xuefeng. An Energy Storage System with Binary Cycle Gas Compressionand Its Feasibility Analysis[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 154-161. DOI: 10.16516/j.ceec.2024.2.15
    [4]SUN Xiao, CAI Chunrong, LUO Zhibin, WANG Xiaobo, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Highview Power's Liquid Air Energy Storage Pilot Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 112-124. DOI: 10.16516/j.ceec.2024.2.11
    [5]JIANG Xiaofeng, LI Ji, LU Yun, LI Rui, ZHU Xuecheng, WU Bin. Optimization Analysis of Main Power House Design of a Large-Scale Compressed Air Energy Storage Power Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 32-38. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.005
    [6]WAN Mingzhong, JI Wendong, SHANG Haoliang, YAO Yuanfeng, ZONG Yuquan. Key Problems and Techniques of Geophysical Exploration in Underground Salt Cavern for Compressed Air Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 26-31. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.004
    [7]SUN Xiao, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.007
    [8]Kaiyun ZHENG. Thermodynamic Analysis of Supercritical Working Fluid Brayton Cycle[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 42-47. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.006
    [9]Zuogang GUO, Jinyong LEI, Guangyi DENG. Performance Analysis of Compressed Air Energy Storage System for Grid-connection of Renewable Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 26-32. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.004
    [10]Huanran WANG. Theoretical Analysis of a Novel Compressed Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 15-19. DOI: 10.16516/j.gedi.issn2095-8676.2015.02.003

Catalog

    Guangming CHEN

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1432) PDF downloads (174) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return