Advanced Search
Zhaorong MA, Jinchao LIU, Guokai YUAN. Design of Wind Turbine Supporting Structure in Zhuhai Guishan Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 72-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.014
Citation: Zhaorong MA, Jinchao LIU, Guokai YUAN. Design of Wind Turbine Supporting Structure in Zhuhai Guishan Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 72-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.014

Design of Wind Turbine Supporting Structure in Zhuhai Guishan Offshore Wind Farm

More Information
  • Received Date: June 30, 2015
  • Zhuhai Guishan Offshore Wind Farm is the first big offshore wind project in the South China Sea. The wind turbine supporting structures have four significant engineering characteristics including offshore structure engineering, towering structure, dynamic equipment, both complicate and soft sea soil as well. Design of wind turbine support structures is one of the most critical and difficult techinical challenges in this project. In this paper, general design contents of supporting structures are introduced. Some key technical topics, like soil parameters and pile-substructure interaction, turbine-substructre-foundaton integrated analysis, frequecy window problem, structure fatigue analysis, corrosion prevention design and grouted connection design are emphasized in this paper.
  • [1]
    SAWYER S. Global Wind Markets-onward and Upward. In: Proceedings of European Wind Energy Conference, Track: BUSINESSANDPOLICY TOPIC: Global Policies and Markets. ID: 692. 2010.
    [2]
    SEIDEL M. Jacket Substructures for The REpower 5M Wind Turbine [C]. Proceedings of European Offshore Wind, 2007.
    [3]
    DNV-OS-J101. Det Norske Veritas: Offshore Standard, Design of Offshore Wind Turbine Structures [S].
    [4]
    API RP 2A-WSD. American Petroleum Institute: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design [S]. October, 2007.
    [5]
    JTS 167-4—2012,港工工程桩基规范 [S].
    [6]
    刘晋超,熊根,朱斌,等. 砂土海床中大直径单桩水平承载与变形特性 [J]. 岩土力学,2015, 36(2): 591-599.
    [7]
    PRENDERGAST L J, HESTER D, GAVIN K, et al. An Investigation of the Changes in the Natural Frequency of a Pile Affected by Scour [J]. Journal of Sound and Vibration, 2013(332): 6685-6702.
    [8]
    LOMBARDI D, BHATTACHARYA S, WOOD D M. Dynamic Soil-structure Interaction of Monopile Supported Wind Turbines in Cohesive Soil [J]. Soil Dynamic and Earthquake Engineering, 2013(49): 165-180.
  • Related Articles

    [1]CHEN Ke, ZHANG Li, LIAO Kan. Brief Analysis of the Development of Mechanical Research and Trends of Grouted Connection of Offshore Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 57-63. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.007
    [2]ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.002
    [3]Yuepeng XUE. Research on the Prevent Flooding Design for the First Bay in AP1000 Nuclear Power Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(S1): 36-40. DOI: 10.16516/j.gedi.issn2095-8676.2019.S1.008
    [4]Jinmiao XU, Afeng WU, Weike LI, Xiaoru FAN, Lin FENG. Research on the Prevention of Coal Blocking in Power Plant Raw Coal Bunker[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 92-97. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.016
    [5]WANG Qin, CHEN Wei. The Structural Design Discussion of Desulfurization Anti-corrosion Flue Gas Duct[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 146-149. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.026
    [6]Yuting LI, Xiaofeng ZHANG, Sheng YE. Anti-corrosion Design of Concrete Structure in Sulfate Strong Corrosive Environment in Saline Soil in Plateau Area[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 102-105. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.016
    [7]Jinhui CHEN. Research on the Oil Leakage Prevention for Nuclear Power Generator[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 125-128. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.024
    [8]RONG Xiaohong. Study on Typhoon Prevention Measures of Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(S1): 77-81. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.017
    [9]LIU Donghua, YUAN Guokai, CHEN Tao, WANG Xian. Review on Fatigue Mechanism of Grouted Connection in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(S1): 68-72. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.015
    [10]Xiaohua HE, Li ZHANG. Cathodic Protection Design and Application of Offshore Wind Turbine Supporting Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 76-79. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.015
  • Cited by

    Periodical cited type(11)

    1. 李保洋. 某近海风电场风机基础选型设计. 南方能源建设. 2023(04): 166-173 . 本站查看
    2. 陈珂,陈诚,元国凯,陈涛. 考虑偏心误差的导管架灌浆原型抗拔性能研究. 施工技术(中英文). 2022(04): 12-16 .
    3. 逯鹏,刘玉飞,张清涛,崔文涛,茹洋洋,林逸凡. 风机导管架基础在深水区的应用前景展望. 船舶工程. 2022(S1): 213-216+230 .
    4. 佟永录. 外海风电超大型钢管桩基础设计. 铁道建筑技术. 2022(09): 105-109 .
    5. 胡雪扬,贾小刚,莫伟南. 台湾海峡某典型深远海域风电场风机基础选型与优化. 水电与新能源. 2020(03): 28-32 .
    6. 田伟丽,汪冬冬,高健岳. 海上风电项目中导管架基础施工技术综述. 中国港湾建设. 2020(05): 20-24 .
    7. 李恒军,杨敏冬,刘沙,周德棕,王大龙. 海上风机支撑结构疲劳性能试验研究. 南方能源建设. 2020(03): 89-94 . 本站查看
    8. 王腾,黄洪辉,张鹏,张书飞,吴风霞,刘庆霞,廖秀丽,谢斌. 珠海桂山风电场水域渔业资源声学评估与空间分布. 中国水产科学. 2020(12): 1496-1504 .
    9. 张青海,李陕锋,王书稳. 海上风电导管架群桩施工技术的研究应用. 南方能源建设. 2018(02): 126-132 . 本站查看
    10. 王大鹏,许卫士,李鸿运. 海上风电导管架结构与桩基灌浆连接施工工艺. 海洋开发与管理. 2018(S1): 88-91 .
    11. 黄小卫,肖波,丁金伟,张维佳. 海底电缆检测中ROV与非动力定位平台自适应匹配. 南方能源建设. 2017(02): 126-131 . 本站查看

    Other cited types(3)

Catalog

    Guokai YUAN

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (982) PDF downloads (97) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return