Advanced Search
Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003
Citation: Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003

Research Progress on Amine Absorbent for CO2 Capture from Flue Gas

More Information
  • Received Date: December 09, 2018
  • Revised Date: January 21, 2019
  •   [Introduction]  Chemical absorption based on amines is the most mature technology for post-combustion CO2 capture. However, this technology has the drawback of high energy cost, and developing new amine absorbent as an alternative of monoethanolamine (MEA) solution will be an important method to deal with this problem.
      [Method]  In this review, the amine absorbent was classified into four categories according to the compositions, namely single amine absorbent, blended amine absorbent, phase-change amine absorbent and water-lean amine absorbent. The technological characteristics and research situation of these absorbents were introduced.
      [Result]  The blended amines combine the advantages of different single amine, showing good CO2 capture performance with high reaction rate, high absorption capacity and low energy cost. Phase-change amine absorbent and water-lean amine absorbent are the new generation of absorbents, which have great potential, but still need to be further studied and improved.
      [Conclusion]  Therefore, blended amine is a more mature solvent which has better advantages in industrial application in the near term.
  • [1]
    国家发改委,国家能源局. 能源发展“十三五”规划 [EB]. (2016-12-26)[2018-09-06].

    National Development and Reform Commission, National Energy Administration. Energy development 13th five-year plan [EB]. (2016-12-26)[2018-09-06].
    [2]
    英国石油公司. BP世界能源统计年鉴 [EB/OL]. (2017-06-12)[2018-09-06]. http://www.bp.com/statisticalreview.

    BP. BP statistical review of world energy [EB/OL]. (2017-06-12)[2018-09-06]. http://www.bp.com/statisticalreview.
    [3]
    高云. 巴黎气候变化大会后中国的气候变化应对形势 [J]. 气候变化研究进展,2017, 13(1): 89-94.

    GAO Y. China′s response to climate change issues after paris climate change conference [J]. Climate Change Research, 2017, 13(1): 89-94.
    [4]
    OKO E, WANG M, JOEL A S. Current status and future development of solvent-based carbon capture[J]. International Journal of Coal Science & Technology, 2017, 4(1): 5-14.
    [5]
    RUBIN E S, MANTRIPRAGADA H, MARKS A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38(5): 630-671.
    [6]
    ZHAO B, LIU F, CUI Z, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: process improvement[J]. Applied Energy, 2017(185): 362-375.
    [7]
    MORKEN A K, PEDERSEN S, KLEPPE E R, et al. Degradation and emission results of amine plant operations from MEA testing at the CO2 technology centre mongstad[J]. Energy Procedia, 2017, 114: 1245-1262.
    [8]
    ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654.
    [9]
    LIANG Z, RONG W, LIU H, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015(40): 26-54.
    [10]
    方梦祥,周旭萍,王涛,等. CO2化学吸收剂 [J]. 化学进展,2015, 27(12): 1808-1814.

    FANG M X, ZHOU X P, WANG T, et al. Solvent development in CO2 chemical absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814.
    [11]
    PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide post combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology,2009, 43(16): 6427-6433.
    [12]
    EL HADRI N, QUANG D V, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2017(185): 1433-1449.
    [13]
    DU Y, YUAN Y, ROCHELLE G T. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture[J]. Chemical Engineering Science, 2016(155): 397-404.
    [14]
    IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2414-2420.
    [15]
    CONWAY W, BRUGGINK S, BEYAD Y, et al. CO2 absorption into aqueous amine blended solutions containing Monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes[J]. Chemical Engineering Science, 2015(126): 446-454.
    [16]
    HINAI A A, HADRI N E, ZAHRA M A. Amine-blends screening and characterization for CO2 post-combustion capture[M]. Heidelberg: Springer International Publishing, 2017.
    [17]
    GAO H, XU B, LIU H, et al. Effect of amine activators on aqueous N, N-diethylethanolamine solution for postcombustion CO2 capture[J]. Energy & Fuels, 2016, 30(9): 7481-7488.
    [18]
    ZHANG R, ZHANG X, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC) [J]. Applied Energy, 2017(205) : 1002-1011.
    [19]
    NWAOHA C, SAIWAN C, SUPAP T, et al. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) [J]. International Journal of Greenhouse Gas Control, 2016(53): 292-304.
    [20]
    MANGALAPALLY H P, HASSE H. Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents[J]. Energy Procedia, 2011(4): 1-8.
    [21]
    IDEM R, SUPAP T, SHI H, et al. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants[J]. International Journal of Greenhouse Gas Control, 2015(40): 6-25.
    [22]
    BUMB P, KUMAR R, KHAKHARIA P, et al. Demonstration of advanced APBS solvent at TNO′s CO2 capture pilot plant[J]. Energy Procedia,2014, 63(Supp. C): 1657-1666.
    [23]
    毛松柏,江洋洋,叶宁,等. 新型高效低耗CO2捕集配方溶剂的开发及工业应用 [J]. 化学反应工程与工艺,2016, 32(6): 559-564.

    MAO S B, JIANG Y Y, YE N, et al. Development and industrial application of a new type of high efficiency and low energy consumption CO2 capture solvent [J]. Chemical Reaction Engineering and Technology, 2016, 32(6): 559-564.
    [24]
    ZHUANG Q, CLEMENTS B, DAI J, et al. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps[J]. International Journal of Greenhouse Gas Control, 2016(52): 449-460.
    [25]
    KIM Y E, PARK J H, YUN S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine–alcohol mixture[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1486-1492.
    [26]
    ZHANG W, JIN X, TU W, et al. A novel CO2 phase change absorbent: MEA/1-Propanol/H2O[J]. Energy & Fuels, 2017, 31(4): 4273-4279.
    [27]
    汪明喜,方梦祥,汪桢,等.相变吸收剂对CO2吸收与再生特性 [J]. 浙江大学学报(工学版), 2013, 47(4): 662-668.

    WANG M X, FANG M X, WANG Z, et al. CO2 absorption and desorption by phase transition lipophilic amin solvents [J]. Journal of Zhejiang Univerisity(Engineering Science Edition), 2013, 47(4): 662-668.
    [28]
    RAYNAL L, ALIX P, BOUILLON P A, et al. The DMX™ process: an original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011(4): 779-786.
    [29]
    HELDEBRANT D J, KOECH P K, GLEZAKOU V-A, et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities and outlook[J]. Chemical Reviews, 2017, 117(14): 9594-9624.
    [30]
    郭超,陈绍云,陈思铭,等. MEA无水溶剂捕集CO2的研究 [J]. 现代化工,2014, 34(8): 107-109.

    GUO C, CHEN S Y, CHEN S M, et al. Mixture absorption system of non-aqueous MEA solution for CO2 capture [J]. Modern Chemical Industry, 2014, 34(8): 107-109.
    [31]
    BARZAGLI F, GIORGI C, MANI F, et al. Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: a comparative analysis carried out by 13C NMR spectroscopy[J]. Applied Energy, 2018(220): 208-219.
    [32]
    FU K, RONGWONG W, LIANG Z, et al. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA–MeOH in an absorber[J]. Chemical Engineering Journal, 2015(260): 11-19.
    [33]
    KANG M K, JEON S B, CHO J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017(63): 281-288.
    [34]
    LIN P H, WONG D S H. Carbon dioxide capture and regeneration with amine/alcohol/water blends[J]. International Journal of Greenhouse Gas Control, 2014(26): 69-75.
    [35]
    ILIUTA I, HASIB-UR-RAHMAN M, LARACHI F. CO2 absorption in diethanolamine/ionic liquid emulsions-chemical kinetics and mass transfer study[J]. Chemical Engineering Journal, 2014(240): 16-23.
    [36]
    XU F, GAO H, DONG H, et al. Solubility of CO2 in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids[J]. Fluid Phase Equilibria, 2014(365): 80-87.
    [37]
    KHAN S N, HAILEGIORGIS S M, MAN Z, et al. Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture[J]. Journal of Molecular Liquids 2017(229): 221-229.
    [38]
    YANG J, YU X, AN L, et al. CO2 capture with the absorbent of a mixed ionic liquid and amine solution considering the effects of SO2 and O2[J]. Applied Energy, 2017(194): 9-18.
  • Related Articles

    [1]LI Jia, LI Ruishuai, LÜ Qinglong. Analysis of Waste Heat Utilization of Flue Gas Carbon Dioxide Capture Technology Based on Compression Heat Pump[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-404
    [2]SUN Xiao, CAI Chunrong, LUO Zhibin, WANG Xiaobo, ZHU Guangtao, PEI Aiguo. Dynamic Simulation and Energy Comsuption Analysis of 70 MPa Hydrogen Refueling Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 150-156. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.017
    [3]LI Xuebin, ZHAO Hao, CHEN Shilong. Research on Energy Consumption Calculation of Prefabricated Cabin Type Lithium Iron Phosphate Battery Energy Storage Power Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 71-77. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.010
    [4]REN Changxiang, LIU Jiao, TAN Jieren. Research on the Business Model and Cost Recovery Mechanism of New Energy Storage on Source-Grid-Load Side of Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 94-102. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.012
    [5]Xiaoyuan WANG, Jun ZHAO, Yongzhen WANG, ✉, Wenjie XU. Energy Efficiency Linkage Optimization of Production and Consumption Data Center Based on CO2 Heat Pump[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(3): 28-37. DOI: 10.16516/j.gedi.issn2095-8676.2020.03.004
    [6]Yong LI. Research on the Relationship Between the Energy Consumption Index and Data Center[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(3): 23-27. DOI: 10.16516/j.gedi.issn2095-8676.2020.03.003
    [7]JIN Xiuzhang, LI Yiying. Energy Consumption Modeling of GA-BP for Desulfurization Pulping System Based on MI Time Series Processing[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 64-68. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.010
    [8]YANG Hui, LIN Haizhou, LUO Haizhong, PEI Aiguo, FANG Mengxiang. Simulation and Analysis of Carbon Dioxide Capture Process with Split Flow Modification Using MDEA/PZ Blend Solution in a Coal-fired Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 40-46. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.006
    [9]Jun ZHANG, Yufeng ZHANG, Qinglin MENG, Riyi LI. Design and Development of Energy-consumption Analysis Software for Prefabricated Cabin Type of Industrial Building[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 94-101. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.015
    [10]TAN Xueqian. Design Optimization of Spray Bank in Large-scale Wet FGD Absorber[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 98-100,104. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.021
  • Cited by

    Periodical cited type(29)

    1. 林才顺,王翔. 基于二氧化碳捕集的化学吸收剂研究现状及进展. 有色金属(冶炼部分). 2025(04): 75-83 .
    2. 简炎钧,傅夏明,牛松. 船载碳捕集系统关键技术. 机电设备. 2025(02): 22-26 .
    3. 黄钟斌,陈曦,叶宁,郭本帅,周志斌,毛松柏,汪东,江洋洋. MA-2吸收剂在国能锦界电厂15万t/a碳捕集装置上的应用研究. 现代化工. 2024(05): 243-246 .
    4. 陈瑞侃,郭江峰,杨新伟. 醇胺类吸收剂在船载碳捕集系统中的应用研究. 船舶工程. 2024(04): 14-25 .
    5. 黄昊,李珂,陈秋燕,何志军. 傅里叶红外光谱仪中高饱和蒸气压有机胺体积分数标定方法. 柴油机. 2024(03): 44-49 .
    6. 刘强,肖金,于航,罗海中,何庆阳,林海周,薛榕. 变压吸附捕集CO_2技术研究进展及其在石化行业应用案例分析. 南方能源建设. 2024(05): 37-49 . 本站查看
    7. 向勇,侯力,杜猛,贾宁洪,吕伟峰. 中国CCUS-EOR技术研究进展及发展前景. 油气地质与采收率. 2023(02): 1-17 .
    8. 张倩,张井鲁. 基于MEA/烟气CO_2捕集系统的工艺模拟和吸收塔高度对模拟的影响分析. 石油与天然气化工. 2023(02): 28-34 .
    9. 林海周,吴大卫,范永春,罗必雄,裴爱国,方梦祥. 燃煤电厂烟气CO_2化学吸收捕集液-液两相吸收剂开发进展. 洁净煤技术. 2023(04): 21-30 .
    10. 谷俊男,李磊,李睿,韩天竹,李欣. FCC再生烟气胺液吸收法CO_2捕集技术研究. 炼油技术与工程. 2023(11): 15-17 .
    11. 罗海中,吴大卫,范永春,李鹏春,曾少雁,林海周. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估. 南方能源建设. 2023(06): 1-13 . 本站查看
    12. 罗海中,曾少雁,吴大卫. 双碳背景下CCUS技术发展现状及展望. 山东化工. 2023(23): 101-106 .
    13. 薛原,韩伟嘉,林海雷,陈周龙田,吴爽. 生物燃气化学脱碳技术现状与研究进展. 中外能源. 2022(01): 17-25 .
    14. 常慧亮,佟天宇. 控制CO_2排放的途径及展望. 炼油与化工. 2022(01): 13-19 .
    15. 陆诗建,贡玉萍,刘玲,康国俊,陈曦,刘苗苗,张娟娟,王风. 有机胺CO_2吸收技术研究现状与发展方向. 洁净煤技术. 2022(09): 44-54 .
    16. 吴其荣,陶建国,范宝成,刘舒巍,刘宇. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析. 热力发电. 2022(10): 28-34 .
    17. 王中辉,苏胜,马智伟,宋亚伟,陈逸峰,刘涛,江龙,汪一,胡松,向军. 混合胺溶液耦合CaO吸收-矿化CO_2特性及矿化过程关键影响因素研究. 燃料化学学报. 2022(10): 1371-1380 .
    18. 黄昊,沈飞翔,李晓波,李珂,张严. 基于多传感器融合的船舶烟气脱碳吸收剂状态诊断. 柴油机. 2022(06): 37-45 .
    19. 付建欣,赵军,邓帅,王珺瑶,徐耀锋. 关于吸收式碳捕集热力学机制的探索. 工程热物理学报. 2021(01): 48-55 .
    20. 马伟春. 基于中空纤维膜接触器的混合胺吸收剂脱除烟气中CO_2. 应用化工. 2021(01): 61-64+69 .
    21. 杨柳,孔成栋,张忠孝,刘健. 外部扰动对TiO_2-MDEA纳米流体吸收CO_2影响的研究. 动力工程学报. 2021(02): 160-166 .
    22. 孙路长,王争荣,吴冲,王凯亮,张士明,韩文荃. 燃煤电厂万吨级碳捕集工程设计与运行优化研究. 华电技术. 2021(06): 69-78 .
    23. 平甜甜,尹鑫,董玉,申淑锋. 有机胺非水溶液吸收CO_2的动力学研究进展. 化工学报. 2021(08): 3968-3983 .
    24. 林志杰,陈卓伶,王辉. 碳中和技术的化学原理及发展现状. 广州化工. 2021(19): 26-28 .
    25. 郭宇红. 燃煤电厂碳捕集技术及节能优化研究进展. 山西电力. 2021(06): 46-49 .
    26. 雷轩邈,王甫,朱先会,袁金良. 胺法碳捕集胺的降解与抑制方式的研究进展. 高校化学工程学报. 2021(06): 966-978 .
    27. 时飞,李奕帆. 混合基质膜在碳捕集领域的研究进展. 化工进展. 2020(06): 2453-2462 .
    28. 林海周,罗志斌,裴爱国,杨晖,王小博. 二氧化碳与氢合成甲醇技术和产业化进展. 南方能源建设. 2020(02): 14-19 . 本站查看
    29. 杨晖,林海周,罗海中,裴爱国,方梦祥. 基于富液分流改进工艺的混合胺法燃煤电厂烟气碳捕集过程模拟研究. 南方能源建设. 2019(04): 40-46 . 本站查看

    Other cited types(19)

Catalog

    Mengxiang FANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (4090) PDF downloads (533) Cited by(48)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return