Advanced Search
HE Naping,XIAO Guofeng,LIN Xue,et al.Simulation and Optimization of Airflow Organization from Nozzle Side of Air Conditioning in UHV Flexible DC Valve Hall[J].Southern Energy Construction,2022,09(01):86-95.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.013
Citation: HE Naping,XIAO Guofeng,LIN Xue,et al.Simulation and Optimization of Airflow Organization from Nozzle Side of Air Conditioning in UHV Flexible DC Valve Hall[J].Southern Energy Construction,2022,09(01):86-95.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.013

Simulation and Optimization of Airflow Organization from Nozzle Side of Air Conditioning in UHV Flexible DC Valve Hall

More Information
  • Received Date: April 07, 2021
  • Revised Date: August 02, 2021
  •   Introduction  The ultra-high voltage flexible DC valve hall has the characteristics of high height, large volume, and large heat generation of equipment. The air supply mode of the air conditioning in the valve hall can significantly affect the indoor temperature field, wind speed field, and pressure field. It is very important to study the air supply mode of air conditioning in valve hall to ensure the normal operation of heating equipment in valve hall.
      Method  Ansys Fluent 19.2, a CFD simulation software, was used to simulate the valve hall in the horizontal side air supply mode of the spherical nozzle, and the problems in the temperature field, wind speed field and pressure field were analyzed. And they were improved by changing the air supply angle. In this study, three kinds of air supply angles were set for simulation : i=10°, i=20°, i=30°.
      Result  In the case of the horizontal side air supply mode of the spherical nozzle, the average temperature of the air in the valve hall is 30.30 ℃, and the average temperature, maximum temperature, and minimum temperature of the valve body surface are 52.91 ℃, 62.93 ℃, 43.55 ℃ respectively. There is local high temperature on the valve body surface. When i=30°, the lowest average indoor air temperature is 30.27 ℃, and there is less static air area around the valve body. The lower limit of the maximum surface temperature of the valve body at four air supply angles is 61.66 ℃; when i=10° and 20°, the average air temperature in the valve hall is respectively 30.40 ℃, 30.45 ℃, the highest temperature of the valve body surface at these two air supply angles exceeds 63 ℃.
      Conclusion  The best inclination angle of the spherical nozzle air supply in summer in the UHV flexible DC valve hall is 30°.
  • HE Naping,XIAO Guofeng,LIN Xue,et al.Simulation and Optimization of Airflow Organization from Nozzle Side of Air Conditioning in UHV Flexible DC Valve Hall[J].Southern Energy Construction,2022,09(01):86-95.

  • [1]
    石骁. 特高压柔直换流站阀厅屋盖结构选型与优化 [J]. 南方能源建设, 2018, 5(4): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.015.

    SHIX. Selection and optimization of the roof structure of the valve hall of the UHV DC converter station [J]. Southern Energy Construction,2018,5(4): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.015.
    [2]
    苟少清. 特高压柔直阀厅室内气流组织的CFD模拟研究 [D]. 北京: 北京交通大学, 2010.

    GOUS Q. CFD simulation study on air distribution in the valve hall of converter station [D]. Beijing: Beijing Jiao Tong University, 2010.
    [3]
    李慧. 换流站阀厅空调气流组织模拟分析 [J]. 建筑热能通风空调, 2017, 36(1): 72-75. DOI: 10.3969/j.issn.1003-0344.2017.01.017.

    LIH. Simulation analysis of airflow organization of air conditioning in converter station valve hall [J]. Building thermal ventilation and air conditioning, 2017, 36(1): 72-75. DOI: 10.3969/j.issn.1003-0344.2017.01.017.
    [4]
    张吉超, 王青. 喷口送风在大空间区域的应用与探讨 [J]. 节能, 2015, 34(6): 57-59. DOI: 10.3969/j.issn.1004-7948.2015.06.015.

    ZHANGJ C, WANGQ. Application and discussion of nozzle air supply in large space area [J]. Energy Conservation, 2015, 34(6): 57-59. DOI: 10.3969/j.issn.1004-7948.2015.06.015.
    [5]
    张欢, 杨紫维, 由世俊, 等. 某建筑中庭气流组织的数值模拟 [J].暖通空调, 2014, 44(11): 75-80.

    ZHANGH, YANGZ W, YOUS J, et al. Numerical simulation of air distribution in the atrium of a building [J]. Heating Ventilating and Air Conditioning, 2014, 44(11): 75-80.
    [6]
    张晓华. 三峡左岸电站暖通空调系统设计与运行 [J]. 暖通空调, 2012, 42(9): 95-99+18. DOI: 10.3969/j.issn.1002-8501.2012.09.022.

    ZHANGX H. Design and operation of the HVAC system of the three gorges left bank power station [J]. Heating Ventilating and Air Conditioning, 2012, 42(9): 95-99+18. DOI: 10.3969/j.issn.1002-8501.2012.09.022.
    [7]
    沈晟炜, 陈诚. 上海某博览馆空调系统球形送风口CFD模拟 [J]. 节能, 2018, 37(4): 15-18. DOI: 10.3969/j.issn.1004-7948.2018.04.006.

    SHENS W, CHENC. CFD simulation of the spherical air outlet of the air-conditioning system of an Expo in Shanghai [J]. Energy Conservation, 2018, 37(4): 15-18. DOI: 10.3969/j.issn.1004-7948.2018.04.006.
    [8]
    蔡宁, 王梦迪, 李志浩, 等. 大空间建筑夏季喷口送风工况下室内空气垂直温度分布试验研究 [J]. 南京理工大学学报, 2019, 43(5): 600-606. DOI: 10.14177/j.cnki.32-1397n.2019.43.05.009.

    CAIN, WANGM D, LIZ H, et al. Experimental study on the vertical temperature distribution of indoor air under the condition of summer nozzle air supply in large space buildings [J]. Journal of Nanjing University of Science and Technology, 2019, 43(5): 600-606. DOI: 10.14177/j.cnki.32-1397n.2019.43.05.009.
    [9]
    赵彬, 林波荣, 李先庭, 等. 室内空气分布的预测方法及比较 [J]. 暖通空调, 2001(4): 82-86. DOI: 10.3969/j.issn.1002-8501.2001.04.026.

    ZHAOB, LINB R, LIX T, et al. Prediction methods and comparison of indoor air distribution [J]. HVAC, 2001(4): 82-86. DOI: 10.3969/j.issn.1002-8501.2001.04.026.
    [10]
    王福军. 流体机械旋转湍流计算模型研究进展 [J]. 农业机械学报, 2016, 47(2): 1-14. DOI: 10.6041/j.issn.1000-1298.2016.02.001.

    WANGF J. Research progress on calculation models of rotating turbulence in fluid machinery [J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(2): 1-14. DOI: 10.6041/j.issn.1000-1298.2016.02.001.
    [11]
    金新阳, 杨伟, 金海, 等. 数值风工程应用中湍流模型的比较研究 [J]. 建筑科学, 2006(5): 1-5+28. DOI: 10.3969/j.issn.1002-8528.2006.05.001.

    JINX Y, YANGW, JINH, et al. Application of turbulence model in numerical wind engineering comparative research [J]. Building Science, 2006(5): 1-5+28. DOI: 10.3969/j.issn.1002-8528.2006.05.001.
    [12]
    李琼, 持田灯, 孟庆林, 等. 建筑室外风环境数值模拟的湍流模型比较 [J]. 华南理工大学学报(自然科学版), 2011, 39(4): 121-127. DOI: 10.3969/j.issn.1000-565X.2011.04.022.

    LIQ,CHIT D,MENGQ L,et al. Comparison of turbulence models for numerical simulation of outdoor wind environment in buildings [J]. Journal of South China University of Technology (Natural Science Edition) , 2011, 39(4): 121-127. DOI: 10.3969/j.issn.1000-565X.2011.04.022.
    [13]
    谢海英, 张双, 关欣. 湍流模型和壁面函数对室内空气流动数值模拟的影响 [J]. 上海理工大学学报, 2017, 39(1): 81-85. DOI: 10.13255/j.cnki.jusst.2017.01.014.

    XIEH Y, ZHANGS, GUANX. Influence of turbulence model and wall function on numerical simulation of indoor air flow [J]. Journal of University of Shanghai for Science and Technology, 2017, 39(1): 81-85. DOI: 10.13255/j.cnki.jusst.2017.01.014.
    [14]
    王亚冲, 陈景鹏, 崔村燕, 等. 受限空间内湍流模型对气体扩散仿真结果的影响 [J]. 中国安全生产科学技术, 2016, 12(7): 123-127. DOI: 10.11731/j.issn.1673-193x.2016.07.022.

    WANGY C, CHENJ P, CUIC Y, et al. Influence of turbulence model on gas diffusion simulation results in confined space [J]. China Work Safety Science and Technology, 2016, 12(7): 123-127. DOI: 10.11731/j.issn.1673-193x.2016.07.022.
    [15]
    MERONEY ROBERTN. CFD modeling of dense gas cloud dispersion over irregular terrain [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012 (104-106): 500-508. DOI: 10.1016/j.jweia.2012.01.001.
  • Related Articles

    [1]LEI Lei, ZHOU Jun, LI Zhuoyan, LI Shaohua, LIU Yan. Simulation and Analysis of Gas Leakage in Hydrogen Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(3): 163-171. DOI: 10.16516/j.ceec.2024-410
    [2]CHEN Zewei, WU Jiale, WANG Shanli, ZHANG Jiayi, FANG Bing, YAN Peng, HUANG JunHui. New Energy Storage Business Models and Revenue Levels Based on Simulation Calculation[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(6): 142-152. DOI: 10.16516/j.ceec.2024.6.15
    [3]OU Minchao, WU Di, ZHANG Min. Refined Wind Simulation Based on Large Eddy Simulation and Mesoscale Numerical Weather Model[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(1): 96-104. DOI: 10.16516/j.ceec.2024.1.10
    [4]LI Cong, FANG Qi. Research on Numerical Simulation of Cohesive Behavior in Shearkey-Less Grouted Connection[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.001
    [5]Hanxiang CAI, Chaohe CHEN. Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(1): 20-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.003
    [6]Daibo CHI, Guofeng XIAO. Research on Natural Ventilation in the Indoor Pre-Insertion Resistor Circuit Field of the VSC-HVDC Converter Substation Based on CFD[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 123-129. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.016
    [7]Kang HU, Xue SHAO. Research on Longitudinal Jet Ventilation System of Highway Tunnel Based on CFD[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S2): 131-136. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.021
    [8]Wenpeng GE, Di WU, Desheng MIAO, Huaixi LIU, Yan LI. Numerical Study on Wind Resource Around the Turbine Site for Real Complex Terrain Based on CFD Method[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(1): 59-64. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.009
    [9]Haitao WANG, Haijun WANG, Hongfang GU, Jiangwen SONG, Yi YANG. Study on Power Engineering Simulation Design Based on CFD[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 38-43,48. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.006
    [10]Yuan LI, Jianzhong LIN, Dongsheng TANG, Junfeng LI. Flocculation and Adsorption Experiment for Treatment of Simulated Radioactive Wastewater[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(4): 81-87. DOI: 10.16516/j.gedi.issn2095-8676.2015.04.014
  • Cited by

    Periodical cited type(1)

    1. 白杨,周发山. 变电站智能精确送风环控系统设计及气流组织模拟研究. 电工技术. 2024(24): 11-14+18 .

    Other cited types(0)

Catalog

    Yufeng ZHANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(29)  /  Tables(3)

    Article Metrics

    Article views (574) PDF downloads (31) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return