Advanced Search
ZENG Yuxin, SHI Wei, ZHANG Lixian, ZHOU Yiming. Research on Pile-Soil Interaction of 10 MW Large Monopile Offshore Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001
Citation: ZENG Yuxin, SHI Wei, ZHANG Lixian, ZHOU Yiming. Research on Pile-Soil Interaction of 10 MW Large Monopile Offshore Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 1-12. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.001

Research on Pile-Soil Interaction of 10 MW Large Monopile Offshore Wind Turbine

More Information
  • Received Date: December 20, 2022
  • Revised Date: December 28, 2022
  •   Introduction  Most of the completed offshore wind farms in the world are located in shallow water (water depth < 30 m), mainly based on fixed foundations such as monopiles. With the increasingly mature wind power technology, offshore wind power gradually shifts towards the trend of large unit, and the foundation diameter of single-pile offshore wind turbines will also increase as the wind turbine become larger. The environmental loads and soil conditions are becoming more and more stringent. The study on pile-soil interaction of large-diameter monopile offshore wind turbines has become one of the key technical issues of offshore wind power technology.
      Method  The impact of different pile-soil models on the dynamic response of large monopile offshore wind turbines in shallow water areas with 10 MW large offshore wind turbines was studied.
      Result  The results show that the macro element method considers the nonlinear stiffness and plasticity, thus the sum of power spectral density near the characteristic frequency of the macro element method is large, which demonstrates the great advantages of the macro element method over other traditional pile-soil models.
      Conclusion  The study of this paper has far-reaching theoretical value and engineering application prospects for the overall safe operation of wind turbine.
  • loading
  • [1]
    黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望 [J]. 化工进展, 2022, 41(11): 5695-5708. DOI: 10.16085/j.issn.1000-6613.2022-1209.

    HUANG S, WANG J Y, GUO P, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. DOI: 10.16085/j.issn.1000-6613.2022-1209.
    [2]
    覃盛琼, 程朗, 何占启, 等. 风力发电系统研究与应用前景综述 [J]. 机械设计, 2021, 38(8): 1-8. DOI: 10.13841/j.cnki.jxsj.2021.08.001.

    QIN S Q, CHENG L, HE Z Q, et al. Review of research and application on the wind power-generation system [J]. Journal of Machine Design, 2021, 38(8): 1-8. DOI: 10.13841/j.cnki.jxsj.2021.08.001.
    [3]
    SÁNCHEZ S, LÓPEZ-GUTIÉRREZ J S, NEGRO V, et al. Foundations in offshore wind farms: evolution, characteristics and range of use. Analysis of main dimensional parameters in monopile foundations [J]. Journal of Marine Science and Engineering, 2019, 7(12): 441. DOI: 10.3390/jmse7120441.
    [4]
    孙永鑫. 近海风机超大直径单桩水平承载特性试验与数值分析 [D]. 杭州: 浙江大学, 2016.

    SUN Y X. Experimental and numerical studies on a laterally loaded monopile foundation of offshore wind turbine [D]. Hangzhou: Zhejiang University, 2016.
    [5]
    MATLOCK H. Correlation for design of laterally loaded piles in soft clay [C]//American Society of Civil Engineers. Offshore Technology Conference, Houston, Texas, April 21-23, 1970. Houston: American Society of Civil Engineers, 1970. DOI: 10.4043/1204-MS.
    [6]
    REESE L C, COX W R, KOOP F D. Field testing and analysis of laterally loaded piles om stiff clay [C]//American Society of Civil Engineers. Offshore Technology Conference, Houston, Texas, May 4-7, 1975. Houston: American Society of Civil Engineers, 1975. DOI: 10.4043/2312-MS.
    [7]
    MCVAY M C, NIRAULA L. Development of p-y curves for large diameter piles/drilled shafts in limestone for fbpier [R]. Gainesville: University of Florida, 2004.
    [8]
    BROWN D A, SHIE C F. Three dimensional finite element model of laterally loaded piles [J]. Computers and Geotechnics, 1990, 10(1): 59-79. DOI: 10.1016/0266-352X(90)90008-J.
    [9]
    KOUDA M, OKAMOTO M, TAKEMURA J, et al. Direct measurement of p-y relationships of piles in sand [C]//Japanese Geotech Soc. Proceedings of International Conference on Centrifuge 98, Tokyo, Japan, 1998. Tokyo: A A Balkema Publishers, 1998: 551-556.
    [10]
    朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验 [J]. 岩土工程学报, 2013, 35(10): 1807-1815.

    ZHU B, XIONG G, LIU J C, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815.
    [11]
    王富强, 荣冰, 张嘎, 等. 水平循环荷载下风电机桩基础离心模型试验研究 [J]. 岩土力学, 2011, 32(7): 1926-1930. DOI: 10.16285/j.rsm.2011.07.042.

    WANG F Q, RONG B, ZHANG G, et al. Centrifugal model test of pile foundation for wind power unit under cyclic lateral loading [J]. Rock and Soil Mechanics, 2011, 32(7): 1926-1930. DOI: 10.16285/j.rsm.2011.07.042.
    [12]
    DAMGAARD M, ZANIA V, ANDERSEN L V, et al. Effects of soil–structure interaction on real time dynamic response of offshore wind turbines on monopiles [J]. Engineering Structures, 2014, 75: 388-401. DOI: 10.1016/j.engstruct.2014.06.006.
    [13]
    DNV GL. Support structures for wind turbines: DNV-ST-0126 [S]. Oslo: DNV GL, 2018.
    [14]
    SKAU K S, PAGE A M, KAYNIA A M, et al. REDWIN-reducing cost in offshore wind by integrated structural and geotechnical design [J]. Journal of Physics:Conference Series, 2018, 1104: 012029. DOI: 10.1088/1742-6596/1104/1/012029.
    [15]
    ABHINAV K A, SAHA N. Dynamic analysis of monopile supported offshore wind turbines [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 170(5): 428-444. DOI: 10.1680/jgeen.16.00022.
    [16]
    VELARDE J, VANEM E, KRAMHØFT C, et al. Probabilistic analysis of offshore wind turbines under extreme resonant response: application of environmental contour method [J]. Applied Ocean Research, 2019, 93: 101947. DOI: 10.1016/j.apor.2019.101947.
    [17]
    LØKEN I B, KAYNIA A M. Effect of foundation type and modelling on dynamic response and fatigue of offshore wind turbines [J]. Wind Energy, 2019, 22(12): 1667-1683. DOI: 10.1002/we.2394.
    [18]
    WINKLER E. Die lehre von elastizitat und festigkeit [M]. Prague: Dominicus, 1867.
    [19]
    American Petroleum Institute (API). Petroleum and natural gas industries-specific requirements for offshore structures: part 4-geotechnical and foundation design considerations: ISO 19901-4: 2016 [S]. New York: American Petroleum Institute, 2016.
    [20]
    BERGUA R, ROBERTSON A, JONKMAN J, et al. OC6 phase II: Integration and verification of a new soil–structure interaction model for offshore wind design [J]. Wind Energy, 2022, 25(5): 793-810. DOI: 10.1002/we.2698.
    [21]
    BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24(8): 1015-1025. DOI: 10.1016/S0141-0296(02)00021-4.
    [22]
    LAVASSAS I, NIKOLAIDIS G, ZERVAS P, et al. Analysis and design of the prototype of a steel 1 MW wind turbine tower [J]. Engineering Structures, 2003, 25(8): 1097-1106. DOI: 10.1016/S0141-0296(03)00059-2.
    [23]
    PAGE A M, GRIMSTAD G, EIKSUND G R, et al. A macro-element model for multidirectional cyclic lateral loading of monopiles in clay [J]. Computers and Geotechnics, 2019, 106: 314-326. DOI: 10.1016/j.compgeo.2018.11.007.
    [24]
    PAGE A M, NAESS V, DE VAAL J B, et al. Impact of foundation modelling in offshore wind turbines: comparison between simulations and field data [J]. Marine Structures, 2019, 64: 379-400. DOI: 10.1016/j.marstruc.2018.11.010.
  • Cited by

    Periodical cited type(9)

    1. 兰嘉文,翟乾俊,孙仲泽,万雄斌. 风力发电机组大直径塔筒分片平台设计与校核. 南方能源建设. 2025(01): 141-146 . 本站查看
    2. 叶灿胜,王俊杰,刘辉. 海上风电大直径单桩拆除施工技术. 港口航道与近海工程. 2025(02): 104-109 .
    3. 李娜,李昕,施伟,柳春光. 波流作用下平面网衣水动力特性数值模拟. 上海海洋大学学报. 2024(02): 509-519 .
    4. 马兆荣,刘振韬,王金玺,张友虎. 统一硬化本构在海上风电大直径单桩桩-土分析中的应用. 南方能源建设. 2024(02): 68-81 . 本站查看
    5. 许成顺,李超越,石世刚,孙毅龙. 考虑桩-土相互作用的超大型单桩式海上风机结构地震响应. 北京工业大学学报. 2024(11): 1301-1311 .
    6. 毛会尔,熊勇,郑继龙,许正刚,陈实,陈华健,王学亮,邓石山,张红. 海上风电大直径单桩基础设计要点及实例分析. 应用科技. 2024(05): 8-13 .
    7. 李保洋. 某近海风电场风机基础选型设计. 南方能源建设. 2023(04): 166-173 . 本站查看
    8. 校建东. 海上风电单桩基础地基加固技术研究. 南方能源建设. 2023(04): 184-192 . 本站查看
    9. 武江,李建. 超短劲性复合桩基在光伏发电项目中的应用. 内蒙古电力技术. 2023(04): 26-31 .

    Other cited types(1)

Catalog

    ZHOU Yiming, zhou19851014@hotmail.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(19)  /  Tables(5)

    Article Metrics

    Article views (1212) PDF downloads (222) Cited by(10)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return