Advanced Search
SHI Zhipeng, SHI Xiangjian, CAI Dan, FENG Kangkang, LOU Qinghui. Construction Scheme for the System Coupling Coal Chemical Industry with Green Electricity and Green Hydrogen[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.016
Citation: SHI Zhipeng, SHI Xiangjian, CAI Dan, FENG Kangkang, LOU Qinghui. Construction Scheme for the System Coupling Coal Chemical Industry with Green Electricity and Green Hydrogen[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.016

Construction Scheme for the System Coupling Coal Chemical Industry with Green Electricity and Green Hydrogen

More Information
  • Received Date: April 09, 2023
  • Revised Date: April 20, 2023
  • Available Online: May 16, 2023
  •   Introduction  With the advancement of the "carbon peak and neutrality" process, it is imperative to reduce carbon and emissions in the coal chemical industry. The coal chemical process uses a large amount of hydrogen, which mainly converted from fossil fuels, resulting in residual carbon emissions. If green electricity and green hydrogen are coupled with coal chemical construction, it will not only promote energy conservation and emission reduction in the coal chemical industry, but also facilitate the large-scale application of green electricity and green hydrogen.
      Method  In this paper, taking the typical coal chemical process of coal to ethylene glycol as an example, the system construction scheme for coupling green electricity and green hydrogen to produce ethylene glycol from coal was elaborated in detail.
      Result   Analysis shows that the introduction of green hydrogen has improved the carbon utilization rate of coal to ethylene glycol, from 21.1% in the conventional process to 40.5% in coupled system, while the carbon emission intensity per ton of finished ethylene glycol has decreased from 2.58 t CO2 to 0.93 t CO2. At the same time, integrated construction can reduce the cost of secondary system construction and operation and maintenance.
      Conclusion   The coupling construction of green electricity, green hydrogen, and coal chemical industry is technically feasible with large development potential, but there are still many challenges to overcome.
  • [1]
    田崟墙, 屈桂洋, 李斌, 等. 碳减排趋势下的煤化工新发展的思考 [J]. 广州化工, 2022, 50(16): 17-19. DOI: 10.3969/j.issn.1001-9677.2022.16.006.

    TIAN Y Q, QU G Y, LI B, et al. Thoughts on new development trend of coal chemical industry under trend of carbon emission reduction [J]. Guangzhou chemical industry, 2022, 50(16): 17-19. DOI: 10.3969/j.issn.1001-9677.2022.16.006.
    [2]
    王强, 徐向阳. “双碳”背景下现代煤化工发展路径研究 [J]. 现代化工, 2021, 41(11): 1-3,8. DOI: 10.16606/j.cnki.issn0253-4320.2021.11.001.

    WANG Q, XU X Y. Research on development path of modern coal chemical industry under background of "emission peak" and "carbon neutrality" [J]. Modern chemical industry, 2021, 41(11): 1-3,8. DOI: 10.16606/j.cnki.issn0253-4320.2021.11.001.
    [3]
    李智, 刘涛, 张志伟, 等. 煤化工低碳技术及其与新能源耦合发展的研究进展 [J]. 中国煤炭, 2022, 48(8): 66-81. DOI: 10.19880/j.cnki.ccm.2022.08.011.

    LI Z, LIU T, ZHANG Z W, et al. Research progress on low-carbon technology of coal chemical industry and its coupling development with new energy [J]. China coal, 2022, 48(8): 66-81. DOI: 10.19880/j.cnki.ccm.2022.08.011.
    [4]
    黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示 [J]. 中国电机工程学报, 2021, 41(增刊1): 28-51. DOI: 10.13334/j.0258-8013.pcsee.211016.

    HUANG Y H, DING T, LI Y T, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality [J]. Proceedings of the CSEE, 2021, 41(Suppl. 1): 28-51. DOI: 10.13334/j.0258-8013.pcsee.211016.
    [5]
    王进君, 郭建华. 风煤富集区域的风-氢-煤化工多能耦合系统碳排放核算与低碳效益评估 [J]. 高电压技术, 2023, 49(1): 94-104. DOI: 10.13336/j.1003-6520.hve.20211557.

    WANG J J, GUO J H. Carbon emission accounting and carbon benefit evaluation of wind-hydrogen-coal chemical multi-functional coupling system in wind coal enriched areas [J]. High voltage engineering, 2023, 49(1): 94-104. DOI: 10.13336/j.1003-6520.hve.20211557.
    [6]
    潘英. 能源战略下的能源电力发展方向和碳排放问题 [J]. 南方能源建设, 2019, 6(3): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.006.

    PAN Y. Energy power development direction and low carbon emission under energy strategy [J]. Southern energy construction, 2019, 6(3): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.006.
    [7]
    张灿, 张明震, 申升, 等. 中国氢能高质量发展的路径建议与政策探讨 [J]. 南方能源建设, 2022, 9(4): 11-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.002.

    ZHANG C, ZHANG M Z, SHEN S, et al. Path suggestion and policy discussion for China's high-quality development of hydrogen energy [J]. Southern energy construction, 2022, 9(4): 11-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.002.
    [8]
    罗志斌, 孙潇, 孙翔, 等. 氢能与储能耦合发展的机遇与挑战 [J]. 南方能源建设, 2022, 9(4): 24-31. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.003.

    LUO Z B, SUN X, SUN X, et al. The coupling development of hydrogen and energy storage technology: opportunities and challenges [J]. Southern energy construction, 2022, 9(4): 24-31. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.003.
    [9]
    许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望 [J]. 中国工程科学, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010.

    XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: application value, challenges, and prospects [J]. Strategic study of CAE, 2022, 24(3): 89-99. DOI: 10.15302/J-SSCAE-2022.03.010.
    [10]
    刘尚泽, 于青, 管健. 氢能利用与产业发展现状及展望 [J]. 能源与节能, 2022(11): 18-21. DOI: 10.16643/j.cnki.14-1360/td.2022.11.038.

    LIU S Z, YU Q, GUAN J. Current situation and prospects of hydrogen energy utilization and industrial development [J]. Energy and energy conservation, 2022(11): 18-21. DOI: 10.16643/j.cnki.14-1360/td.2022.11.038.
    [11]
    史倩, 过良, 张永亮. 新能源制氢在传统炼化企业的应用 [J]. 南方能源建设, 2022, 9(4): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.004.

    SHI Q, GUO L, ZHANG Y L. Application of water-electrolytic hydrogen production technology in traditional refinery and chemical enterprise [J]. Southern energy construction, 2022, 9(4): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.004.
    [12]
    王明华. 绿氢耦合煤化工系统的性能分析及发展建议 [J]. 现代化工, 2021, 41(11): 4-8. DOI: 10.16606/j.cnki.issn0253-4320.2021.11.002.

    WANG M H. Performance analysis and suggestions on hydrogen energy coupling coal chemical system [J]. Modern chemical industry, 2021, 41(11): 4-8. DOI: 10.16606/j.cnki.issn0253-4320.2021.11.002.
    [13]
    李启峰, 邓长虹, 徐泰山, 等. 计及电压随机性的风光消纳能力评估方法 [J]. 武汉大学学报(工学版), 2023, 56(1): 71-79. DOI: 10.14188/j.1671-8844.2023-01-009.

    LI Q F, DENG C H, XU T S, et al. An evaluation method of wind-solar consumption capacity considering voltage randomness [J]. Engineering journal of Wuhan university, 2023, 56(1): 71-79. DOI: 10.14188/j.1671-8844.2023-01-009.
    [14]
    孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156-179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.

    MENG X Y, CHEN M Y, GU A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Natural gas industry, 2022, 42(4): 156-179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.
    [15]
    李鹏, 肖建群. 电解水制氢在电厂和氢能项目的设计应用 [J]. 南方能源建设, 2020, 7(2): 41-45. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.006.

    LI P, XIAO J Q. Design and application of hydrogen production by electrolysising water in power plants and hydrogen energy projects [J]. Southern energy construction, 2020, 7(2): 41-45. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.006.
    [16]
    阳国军, 刘会友. 现代煤化工与绿电和绿氢耦合发展现状及展望 [J]. 石油学报(石油加工), 2022, 38(4): 995-1000. DOI: 10.3969/j.issn.1001-8719.2022.04.026.

    YANG G J, LIU H Y. Status and prospect for the coupling development of modern coal chemical industry with green electricity and green hydrogen [J]. Acta petrolei sinica (petroleum processing section), 2022, 38(4): 995-1000. DOI: 10.3969/j.issn.1001-8719.2022.04.026.
    [17]
    史晓斐. 风能光能互补耦合大规模制备低碳氢源集成化工系统 [D]. 广州: 华南理工大学, 2021. DOI: 10.27151/d.cnki.ghnlu.2021.001485.

    SHI X F. Wind-solar energy coupling for large-scale stable hydrogen supply to chemical process [D]. Guangzhou: South China University of Technology, 2021. DOI: 10.27151/d.cnki.ghnlu.2021.001485.
    [18]
    杨学萍. 碳中和背景下现代煤化工技术路径探索 [J]. 化工进展, 2022, 41(7): 3402-3412. DOI: 10.16085/j.issn.1000-6613.2022-0475.

    YANG X P. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical industry and engineering progress, 2022, 41(7): 3402-3412. DOI: 10.16085/j.issn.1000-6613.2022-0475.
    [19]
    黄文章, 袁建军, 石国峰, 等. 风电制氢与煤化工集成系统可行性分析 [J]. 现代化工, 2021, 41(7): 5-8. DOI: 10.16606/j.cnki.issn0253-4320.2021.07.002.

    HUANG W Z, YUAN J J, SHI G F, et al. Feasibility discussion about an integration system between hydrogen production by wind power and coal chemical industry [J]. Modern chemical industry, 2021, 41(7): 5-8. DOI: 10.16606/j.cnki.issn0253-4320.2021.07.002.
    [20]
    刘欣. 乙二醇合成工艺的研究 [J]. 山东化工, 2023, 52(2): 11-12,16. DOI: 10.19319/j.cnki.issn.1008-021x.2023.02.046.

    LIU X. Study on synthesis process of ethylene glycol [J]. Shandong chemical industry, 2023, 52(2): 11-12,16. DOI: 10.19319/j.cnki.issn.1008-021x.2023.02.046.
    [21]
    储根云, 范英杰, 张大伟, 等. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展 [J]. 化工进展, 2022, 41(3): 1654-1666. DOI: 10.16085/j.issn.1000-6613.2021-2147.

    CHU G Y, FAN Y J, ZHANG D W, et al. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process [J]. Chemical industry and engineering progress, 2022, 41(3): 1654-1666. DOI: 10.16085/j.issn.1000-6613.2021-2147.
  • Related Articles

    [1]ZHANG Mingzhen, ZHANG Can, WU Xiushan, CHENG Qian. Analysis of the Impact of Water Resources on China's Green Hydrogen Industry[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 172-178. DOI: 10.16516/j.ceec.2024.2.17
    [2]ZHONG Yilu, LIU Weixiong, ZHENG Yun, WANG Lu, YIN Jiamin, LI Zhen, ZHENG Kexin, XIAO Kai. Electricity Transmission Strategy Research Based on Wind-Coal-Battery-Hydrogen-CCUS Multi Energy Coupling and Bundling System[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 122-130. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.012
    [3]YU Dan, SUN Yongbin, YANG Qi, GAO Li, DONG Biqiong, ZENG Xiaochao. Current Status and Prospect of Recycling Technology of Wind Turbine Blades[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 113-121. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.011
    [4]WANG Haoran, FENG Tiantian, CUI Mingli, ZHONG Cheng. Analysis of Coupling Effect Between Green Hydrogen Trading Market and Electricity Market Under Carbon Trading Policy[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(3): 32-46. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.004
    [5]Dongming DU, Canshen TAN, Xiangyu ZHANG. Discussion on Energy Saving and Consumption Reduction of Flue Gas, Air and Pulverized Coal Pipeline for 1 000 MW Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 87-92. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.013
    [6]Hui CHEN, Ying LIU, Longsheng ZHAO. Typical Case Analysis of the Building-type CCHP System[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 25-30. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.003
    [7]Ying PAN. Energy Power Development Direction and Low Carbon Emission Under Energy Strategy[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.006
    [8]Xiaomin LIU, Zhihui LIU, Zhe SHI. Comprehensive Evaluation the Nuclear Power Energy Saving and Emission Reduction of Guangdong Province Based on the Entropy Method[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(3): 31-35. DOI: 10.16516/j.gedi.issn2095-8676.2016.03.006
    [9]ZHU Caifeng. Discussion on General Layout Characteristics of ″Developing Large Units and Suppressing Small Ones″ Rebuilding Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 135-139. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.030
    [10]Yaoqiu KUANG. Trend and Outlook of Carbon Emission from Energy Consumption in Guangdong Province, China[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.001
  • Cited by

    Periodical cited type(2)

    1. 王震华. 长距离工业用汽管道预暖与蒸汽吹扫. 设备管理与维修. 2025(04): 100-102 .
    2. 房大明,赵强. 压力匹配器在抽汽供热中的应用. 煤炭科技. 2023(06): 53-56 .

    Other cited types(0)

Catalog

    LOU Qinghui

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1814) PDF downloads (174) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return