Advanced Search
HE Zhichun, XIE Min, HUANG Ying, LI Yisheng, ZHANG Shiping. Wind Power, Hydropower and Thermal Power Combined Low-Carbon Maintenance Optimization Based on Continuous Hidden Markov Model[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 43-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.005
Citation: HE Zhichun, XIE Min, HUANG Ying, LI Yisheng, ZHANG Shiping. Wind Power, Hydropower and Thermal Power Combined Low-Carbon Maintenance Optimization Based on Continuous Hidden Markov Model[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 43-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.005

Wind Power, Hydropower and Thermal Power Combined Low-Carbon Maintenance Optimization Based on Continuous Hidden Markov Model

  •   Introduction  In the context of the new power system, low-carbon maintenance of wind turbines and coordinated maintenance with conventional wind turbine generator systems (WTGS) need to be solved urgently. In this paper, taking into account the impact of multi-attribute meteorological factors and low carbon and economic needs, an optimization model for wind power, hydropower and thermal power combined low-carbon maintenance based on continuous hidden Markov model is established.
      Method  Firstly, dynamic tracking of wind farm maintenance capacity was realized by taking rainfall, wind speed and lightning hazard degree as the observation sequence, taking maintenance capacity as hidden state sequence, and using continuous hidden Markov model (CHMM) process. Then, an optimization model for wind power, hydropower and thermal power combined low-carbon maintenance was constructed by taking the optimal maintenance capacity as the decision-making basis, taking the minimum total cost as the optimization objective, and taking the maintenance constraints and system control constraints into consideration. Finally, took the IEEE30-node system as an example.
      Result  The results show that the proposed model has more significant economic benefits and low carbon characteristics.
      Conclusion  The research in this paper has high theoretical value for the operation and maintenance of WTGS, and has strong engineering applicability.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return