Advanced Search
CAI Yanfeng, XU Chuqi, TANG Dongsheng, WANG Qingqin. Experimental Research on Capacity Expansion of Large-Scale Offshore Wind Farm Under Multiple Wake Models[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 138-147. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.014
Citation: CAI Yanfeng, XU Chuqi, TANG Dongsheng, WANG Qingqin. Experimental Research on Capacity Expansion of Large-Scale Offshore Wind Farm Under Multiple Wake Models[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 138-147. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.014

Experimental Research on Capacity Expansion of Large-Scale Offshore Wind Farm Under Multiple Wake Models

More Information
  • Received Date: January 02, 2023
  • Revised Date: March 14, 2023
  • Available Online: July 24, 2023
  •   Introduction  This article aims to study the optimal planned capacity setting of large-scale offshore wind farm.
      Method  A series of numerical experiments were conducted on a single planned site with a capacity of 1 GW using three models with different unit capacities and three offshore wind farm wake models, combined with an offshore wind resource atlas, to gradually expand it to 2 GW. Power generation, wake effects and marginal utility of the whole site were analyzed.
      Result  The results show that employing the wind turbine with larger single-unit capacity, the higher gaining of the power generation and slower growth of wake loss appear during the capacity expansion. Meanwhile, the larger effective expansion range which taking into account the safety of the wind turbine and the marginal utility exists. However, evaluation of effective expansion range may be affected by wake model selection.
      Conclusion  This article shows that the optimal planned capacity of a single offshore wind farm can be slightly higher than the existing benchmark when multiple constraints, such as utilization of sea area, wind turbine safety and economical efficiency are met. Individual site needs to be subdivided scientifically and the optimal planned capacity should be reasonably set in the future planning of offshore wind farm bases with capacities in the tens of millions of kilowatts.
  • [1]
    李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望 [J]. 中国海上油气, 2022, 34(5): 229-236. DOI: 10.11935/j.issn.1673-1506.2022.05.026.

    LI Z C, HU P, MA J X, et al. Analysis and prospect of offshore wind power development in China [J]. China offshore oil and gas, 2022, 34(5): 229-236. DOI: 10.11935/j.issn.1673-1506.2022.05.026.
    [2]
    廖圣瑄, 陈可仁. 能源岛: 深远海域海上风电破局关键 [J]. 能源, 2021(5): 46-49.

    LIAO S X, CHEN K R. Energy island: the key to breaking the offshore wind power situation in the deep sea [J]. Energy, 2021(5): 46-49.
    [3]
    刘展志, 王诗超, 郝为瀚, 等. 大规模海上风电集中送出建设模式研究 [J]. 南方能源建设, 2023, 10(1): 13-20. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.002.

    LIU Z Z, WANG S C, HAO W H, et al. Research on construction mode of large-scale offshore wind power centralized transmission [J]. Southern energy construction, 2023, 10(1): 13-20. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.002.
    [4]
    邵先成, 王平. 自然资源框架下海上风电的管理困境及对策 [J]. 海洋开发与管理, 2021, 38(9): 36-42. DOI: 10.20016/j.cnki.hykfygl.2021.09.006.

    SHAO X C, WANG P. A study on dilemma of offshore wind power management under the framework of natural resources [J]. Ocean development and management, 2021, 38(9): 36-42. DOI: 10.20016/j.cnki.hykfygl.2021.09.006.
    [5]
    张旭, 罗先觉, 赵峥, 等. 以风电场效益最大为目标的风电装机容量优化 [J]. 电网技术, 2012, 36(1): 237-240. DOI: 10.13335/j.1000-3673.pst.2012.01.042.

    ZHANG X, LUO X J, ZHAO Z, et al. Installed capacity optimization of wind turbine generators considering maximum economic benefit of wind farm [J]. Power system technology, 2012, 36(1): 237-240. DOI: 10.13335/j.1000-3673.pst.2012.01.042.
    [6]
    江岳文, 陈晓榕. 基于D-U空间混合多属性决策的风电场装机容量优化 [J]. 电网技术, 2019, 43(12): 4451-4460. DOI: 10.13335/j.1000-3673.pst.2019.0136.

    JIANG Y W, CHEN X R. Optimization of installed capacity of wind farm with mixed multiple attribute decisions based on D-U space [J]. Power system technology, 2019, 43(12): 4451-4460. DOI: 10.13335/j.1000-3673.pst.2019.0136.
    [7]
    黄杨, 陈红坤, 回俊龙, 等. 考虑风电接纳能力约束的风机装机容量优化 [J]. 武汉大学学报(工学版), 2015, 48(6): 842-847. DOI: 10.14188/j.1671-8844.2015-06-019.

    HUANG Y, CHEN H K, HUI J L, et al. Wind power capacity optimization considering accommodation of wind power constraints [J]. Engineering journal of Wuhan university, 2015, 48(6): 842-847. DOI: 10.14188/j.1671-8844.2015-06-019.
    [8]
    姜欣, 陈红坤, 回俊龙, 等. 计及弃风的风电场最优装机容量 [J]. 电工技术学报, 2016, 31(18): 160-168. DOI: 10.3969/j.issn.1000-6753.2016.18.020.

    JIANG X, CHEN H K, HUI J L, et al. Optimal installed capacity of wind farm considering wind power curtailment [J]. Transactions of China electrotechnical society, 2016, 31(18): 160-168. DOI: 10.3969/j.issn.1000-6753.2016.18.020.
    [9]
    江岳文, 张金辉. 考虑风电接纳水平及负荷增长的海上风电场多阶段规划 [J]. 电力自动化设备, 2022, 42(2): 85-91,111. DOI: 10.16081/j.epae.202111018.

    JIANG Y W, ZHANG J H. Multi-stage planning of offshore wind farm considering wind power accommodation level and load increase [J]. Electric power automation equipment, 2022, 42(2): 85-91,111. DOI: 10.16081/j.epae.202111018.
    [10]
    张金辉, 江岳文. 考虑市场竞价与接纳的海上风电场装机容量及布局分层优化 [J]. 电网技术, 2020, 44(10): 3837-3845. DOI: 10.13335/j.1000-3673.pst.2019.2441.

    ZHANG J H, JIANG Y W. Hierarchical optimization of installed capacity and layout of offshore wind farm considering market bidding and acceptance [J]. Power system technology, 2020, 44(10): 3837-3845. DOI: 10.13335/j.1000-3673.pst.2019.2441.
    [11]
    MORTENSEN N G, DAVIS N, BADGER J, et al. Global wind atlas: validation and uncertainty [R]. Denmark: Technical University of Demark, 2017.
    [12]
    中国电气工业协会. 海上风电场微观选址阶段发电量计算技术规范: T/CEEIA 561—2021 [S]. 北京: 科学技术文献出版社, 2022.

    China Electrical Industry Association. Technical specification for power generation calculation at micro-siting stage of offshore wind farms: T/CEEIA 561—2021 [S]. Beijing: Scientific and Technical Literature Press, 2022.
    [13]
    中华人民共和国住房和城乡建设部. 海上风力发电场设计标准: GB/T 51308—2019 [S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of offshore wind farm: GB/T 51308—2019 [S]. Beijing: China Planning Press, 2019.
    [14]
    崔冬林, 沙伟, 刘树洁, 等. 海上相邻风电场间的“尾流效应”实例分析 [J]. 南方能源建设, 2023, 10(1): 21-28. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.003.

    CUI D L, SHA W, LIU S J, et al. Case study of "wake effect" of adjacent offshore wind farms [J]. Southern energy construction, 2023, 10(1): 21-28. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.003.
    [15]
    JENSEN N O. A note on wind generator interaction [R]. Demark: Risø National Laboratory, 1983.
    [16]
    刘沙, 王中权, 蔡彦枫. 海上风电场运行期尾流损失分析 [J]. 南方能源建设, 2019, 6(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.011.

    LIU S, WANG Z Q, CAI Y F. Wake loss analysis of offshore wind farm in operation [J]. Southern energy construction, 2019, 6(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.011.
    [17]
    BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes [J]. Renewable energy, 2014, 70: 116-123. DOI: 10.1016/j.renene.2014.01.002.
    [18]
    张晓东, 张梦雨, 白鹤. 基于高斯分布的风电场尾流效应计算模型 [J]. 华北电力大学学报, 2017, 44(5): 99-103. DOI: 10.3969/j.ISSN.1007-2691.2017.05.14.

    ZHANG X D, ZHANG M Y, BAI H. Wind farm wake effect calculation model based on Gaussian distribution [J]. Journal of North China Electric Power University, 2017, 44(5): 99-103. DOI: 10.3969/j.ISSN.1007-2691.2017.05.14.
    [19]
    白鹤鸣, 王尼娜, 万德成. 基于不同解析尾流模型的海上风电场数值模拟 [J]. 中国造船, 2020, 61(增刊2): 186-198. DOI: 10.3969/j.issn.1000-4882.2020.z2.020.

    BAI H M, WANG N N, WAN D C. Numerical solutions of offshore wind farm based on different analytical wake models [J]. Shipbuilding of China, 2020, 61(Suppl. 2): 186-198. DOI: 10.3969/j.issn.1000-4882.2020.z2.020.
    [20]
    朱金阳, 黎波. Fuga模型原理浅析 [J]. 风力发电, 2017(5): 27-31.

    ZHU J Y, LI B. Analysis of the principle of Fuga model [J]. Wind power, 2017(5): 27-31.
    [21]
    国家能源局. 风电场工程微观选址技术规范: NB/T 10103—2018 [S]. 北京: 中国水利水电出版社, 2019.

    National Energy Administration. Technical code for micro - siting of wind power projects: NB/T 10103—2018 [S]. Beijing: China Water & Power Press, 2019.
  • Related Articles

    [1]LAN Haochen, LU Bingfu, LI Zhongyi, HUANG Dan, LI Yong, ZHAO Jinbiao. Analysis of the Limited Capacity of Wind Turbine Icing in Extreme Cold Wave Weather Process[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 26-35. DOI: 10.16516/j.ceec.2024-358
    [2]ZHANG Rui, ZHANG Ping, GAO Zhikang. Numerical Simulation Analysis of Hydrodynamic Response and Stress Characteristics of Large-Capacity Floating Wind Turbine Foundations[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-417
    [3]WU Linjun, LI Haiyan, LEI Xiao, WU Yi, LIU Shaoxuan. Large Capacity Crowbar for HL-3 Fusion[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(3): 137-145. DOI: 10.16516/j.ceec.2024.3.15
    [4]Sheng LIU. Research on Compact Layout of Large Capacity Offshore Flexible DC Converter Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 45-50. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.006
    [5]Jiamin YIN, Yun ZHENG, Jin YANG. Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(4): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.002
    [6]ZHANG Xiaping. Optimal Expansion Planning of Energy Hub with Multiple Energy Infrastructures[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 6-12. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.002
    [7]Sha LIU, Zhongquan WANG, Yanfeng CAI. Wake Loss Analysis of Offshore Wind Farm in Operation[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.011
    [8]Yang WANG, Xiangyang ZHOU. Research on the Method for the Reconstruction and Expansion of the Wind Farm Based on the Scada Data[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(3): 92-96. DOI: 10.16516/j.gedi.issn2095-8676.2017.03.017
    [9]Feng HU, Liang FAN. Research on the Application of 3D Laser Scanning Technology in Substation Expansion Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(2): 92-95. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.018
    [10]LUN Zhenjian, HU Ke, GUO Jinchuan, GUO Fang. Research on BESS Capacity Optimization Methods in Micro-grid[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 5-9. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.002
  • Cited by

    Periodical cited type(2)

    1. 李胜,葛文澎,吴嘉诚,曲春明,孙睿. 风力机组尾流模型适用性评价. 南方能源建设. 2024(01): 42-53 . 本站查看
    2. 陈建均. 深远海风电工程水下修复工艺的应用. 广州航海学院学报. 2024(04): 59-64 .

    Other cited types(0)

Catalog

    WANG Qingqin, wangqingqin@gedi.com.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (499) PDF downloads (93) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return