Advanced Search
LIN Cong, LI Xiangfeng, GUO Fang. Research on Fault Current Controller of DC Microgrid[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 50-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.007
Citation: LIN Cong, LI Xiangfeng, GUO Fang. Research on Fault Current Controller of DC Microgrid[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 50-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.007

Research on Fault Current Controller of DC Microgrid

More Information
  • Received Date: August 23, 2022
  • Revised Date: November 18, 2022
  • Available Online: September 05, 2023
  •   Introduction  With the rapid development of AC/DC distribution networks and distributed generation technology, the role of DC microgrids in distribution networks is becoming increasingly important and will become an important component of future distribution networks. Due to the small coverage area and low line impedance of the DC microgrid, when an inter pole short circuit fault occurs, the fault current increases rapidly and has a large amplitude, which can reach more than 10 times the rated working current. This makes it difficult to set the protection of DC microgrids and requires high equipment selection, which restricts the rapid development of DC microgrids.
      Method  In response to the above issues, taking the DC microgrid as the research object, starting from the working principle of inter pole faults in the DC microgrid, the fault characteristics on the DC side of the DC microgrid were analyzed. In response to the shortcomings of existing main current limiting methods, a voltage controllable fault current controller was proposed to achieve precise control of fault current. The simulation model of DC microgrid and fault current controller was built for simulation verification.
      Result  The simulation results show that the fault current controller can significantly reduce the fault current and achieve precise control of the fault current, making the system controllable before and after the fault without locking the protection. During steady-state operation, the fault current controller can also assist the VSC (Voltage Source Converter) in further stabilizing the DC bus voltage.
      Conclusion  To cooperate with the normal operation of the relay protection device and avoid VSC triggering overcurrent protection blocking, it is recommended to set the fault current control range between 1~2 pu.
  • [1]
    薛士敏, 齐金龙, 刘冲. 直流微网保护综述 [J]. 中国电机工程学报, 2016, 36(13): 3404-3412. DOI: 10.13334/j.0258-8013.pcsee.160148.

    XUE S M, QI J L, LIU C. A research review of protection for DC microgrid [J]. Proceedings of the CSEE, 2016, 36(13): 3404-3412. DOI: 10.13334/j.0258-8013.pcsee.160148.
    [2]
    薛士敏, 齐金龙, 刘冲, 等. 直流微网接地方式及新型保护原理 [J]. 电网技术, 2018, 42(1): 48-55. DOI: 10.13335/j.1000-3673.pst.2017.1409.

    XUE S M, QI J L, LIU C, et al. A research of grounding mode and new protection principle for DC microgrids [J]. Power system technology, 2018, 42(1): 48-55. DOI: 10.13335/j.1000-3673.pst.2017.1409.
    [3]
    张宇涵, 杜贵平, 雷雁雄, 等. 直流微网混合储能系统控制策略现状及展望 [J]. 电力系统保护与控制, 2021, 49(3): 177-187. DOI: 10.19783/j.cnki.pspc.200461.

    ZHANG Y H, DU G P, LEI Y X, et al. Current status and prospects of control strategy for a DC micro grid hybrid energy storage system [J]. Power system protection and control, 2021, 49(3): 177-187. DOI: 10.19783/j.cnki.pspc.200461.
    [4]
    DRAGIČEVIĆ T, LU X N, VASQUEZ J C, et al. DC microgrids-part Ⅱ: a review of power architectures, applications, and standardization issues [J]. IEEE transactions on power electronics, 2016, 31(5): 3528-3549. DOI: 10.1109/TPEL.2015.2464277.
    [5]
    MONADI M, ZAMANI M A, IGNACIO CANDELA J, et al. Protection of AC and DC distribution systems embedding distributed energy resources: a comparative review and analysis [J]. Renewable and sustainable energy reviews, 2015, 51: 1578-1593. DOI: 10.1016/j.rser.2015.07.013.
    [6]
    于涛. 基于分布式电源的微电网控制策略研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020. DOI: 10.27060/d.cnki.ghbcu.2020.001247.

    YU T. Research on microgrid control strategy based on distributed power supply [D]. Harbin: Harbin Engineering University, 2020. DOI: 10.27060/d.cnki.ghbcu.2020.001247.
    [7]
    LIANG B M, KANG L, ZHANG Z Y, et al. Simulation analysis of grid-connected AC/DC hybrid microgrid [C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, May 31-June 2, 2018. New York, USA: IEEE, 2018: 969-974. DOI: 10.1109/ICIEA.2018.8397852.
    [8]
    薛士敏, 黄仁乐, 高峰, 等. 基于暂态电流突变量的直流配电系统快速纵联保护新原理 [J]. 供用电, 2016, 33(8): 37-44. DOI: 10.19421/j.cnki.1006-6357.2016.08.007.

    XUE S M, HUANG R L, GAO F, et al. High-speed pilot protection principle for DC distribution system based on the difference of transient currents [J]. Distribution & utilization, 2016, 33(8): 37-44. DOI: 10.19421/j.cnki.1006-6357.2016.08.007.
    [9]
    焦皎, 孟润泉, 任春光, 等. 交直流微电网AC/DC双向功率变换器控制策略 [J]. 电力系统保护与控制, 2020, 48(16): 84-92. DOI: 10.19783/j.cnki.pspc.191124.

    JIAO J, MENG R Q, REN C G, et al. Bidirectional AC/DC interlinking converter control strategy for an AC/DC microgrid [J]. Power system protection and control, 2020, 48(16): 84-92. DOI: 10.19783/j.cnki.pspc.191124.
    [10]
    周钰, 张浩, 陈锐, 等. 直流微电网控制保护策略研究 [J]. 南方能源建设, 2020, 7(4): 61-66. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.009.

    ZHOU Y, ZHANG H, CHEN R, et al. Research on strategy of DC micro-grid control and protection [J]. Southern energy construction, 2020, 7(4): 61-66. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.009.
    [11]
    王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述 [J]. 电力系统自动化, 2020, 44(9): 187-199. DOI: 10.7500/AEPS20191021006.

    WANG C, DU C, XU J X. Review of topologies for medium-and high-voltage DC circuit breaker [J]. Automation of electric power systems, 2020, 44(9): 187-199. DOI: 10.7500/AEPS20191021006.
    [12]
    FRANCK C M. HVDC circuit breakers: a review identifying future research needs [J]. IEEE transactions on power delivery, 2011, 26(2): 998-1007. DOI: 10.1109/TPWRD.2010.2095889.
    [13]
    杨勇, 王文杰, 刘亚萍, 等. 基于大规模风、光并网外送需求的高压直流混合式直流断路器研究 [J]. 可再生能源, 2021, 39(2): 237-244. DOI: 10.3969/j.issn.1671-5292.2021.02.015.

    YANG Y, WANG W J, LIU Y P, et al. Hybrid HVDC breaker for HVDC based wind and photovoltaic power integration system [J]. Renewable energy resources, 2021, 39(2): 237-244. DOI: 10.3969/j.issn.1671-5292.2021.02.015.
    [14]
    TAN R, WANG Y, ZHANG S. Coordination scheme of SFCL and SMES in the DC microgrid for fault current limiting and voltage stability [C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, October 16-18, 2020. New York, USA: IEEE, 2020: 1-2. DOI: 10.1109/ASEMD49065.2020.9276114.
    [15]
    XUE S M, GAO F, SUN W P, et al. Protection principle for a DC distribution system with a resistive superconductive fault current limiter [J]. Energies, 2015, 8(6): 4839-4852. DOI: 10.3390/en8064839.
    [16]
    李斌, 何佳伟. 柔性直流配电系统故障分析及限流方法 [J]. 中国电机工程学报, 2015, 35(12): 3026-3036. DOI: 10.13334/j.0258-8013.pcsee.2015.12.013.

    LI B, HE J W. DC fault analysis and current limiting technique for VSC-based DC distribution system [J]. Proceedings of the CSEE, 2015, 35(12): 3026-3036. DOI: 10.13334/j.0258-8013.pcsee.2015.12.013.
    [17]
    年珩, 孔亮. 直流微电网故障保护技术研究综述 [J]. 高电压技术, 2020, 46(7): 2241-2254. DOI: 10.13336/j.1003-6520.hve.20200472.

    NIAN H, KONG L. Review on fault protection technologies of DC microgrid [J]. High voltage engineering, 2020, 46(7): 2241-2254. DOI: 10.13336/j.1003-6520.hve.20200472.
    [18]
    MARTÍNEZ-PARRALES R, FUERTE-ESQUIVEL C R, ALCAIDE-MORENO B A, et al. A VSC-based model for power flow assessment of multi-terminal VSC-HVDC transmission systems [J]. Journal of modern power systems and clean energy, 2021, 9(6): 1363-1374. DOI: 10.35833/MPCE.2021.000104.
    [19]
    钟庆, 马新华, 王钢, 等. 电压源型换流器稳态等值电路模型 [J]. 高电压技术, 2014, 40(8): 2485-2489. DOI: 10.13336/j.1003-6520.hve.2014.08.032.

    ZHONG Q, MA X H, WANG G, et al. Static equivalent circuit models of voltage source converter [J]. High voltage engineering, 2014, 40(8): 2485-2489. DOI: 10.13336/j.1003-6520.hve.2014.08.032.
    [20]
    赵雨童, 高飞, 张博深. 基于交流电流下垂特性控制的VSC建模和稳定性分析 [J]. 电力自动化设备, 2021, 41(5): 50-55. DOI: 10.16081/j.epae.202105034.

    ZHAO Y T, GAO F, ZHANG B S. Modeling and stability analysis of VSC with droop characteristic based on AC current [J]. Electric power automation equipment, 2021, 41(5): 50-55. DOI: 10.16081/j.epae.202105034.
    [21]
    魏承志, 李明, 李春华, 等. 基于两电平电压源型换流器的直流微网交直流侧接地方式 [J]. 南方电网技术, 2021, 15(2): 116-123. DOI: 10.13648/j.cnki.issn1674-0629.2021.02.015.

    WEI C Z, LI M, LI C H, et al. Grounding modes at AC and DC side of DC microgrid with two-level voltage source converters [J]. Southern power system technology, 2021, 15(2): 116-123. DOI: 10.13648/j.cnki.issn1674-0629.2021.02.015.
  • Related Articles

    [1]LIU Junwei, LIANG Zhanhong, LIU Zhanzhi, ZHONG Jiefeng, ZHANG Zifan. Optimization Calculation Method of Injection Voltage and Series Converter Capacity for Unified Power Flow Controller[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 157-165. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.019
    [2]LAO Zhixuan, ZHENG Bingyao, GUO Fang, MEI Hongdeng, ZHU Wenfeng, WANG Ruiyang, FANG Junjie. Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 65-71. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.009
    [3]DONG Yi, SI Huaning, ZHONG Yuwei, LI Ning, XU Huiping. Research on DC Microgrid Control Using Microcontroller to Realize Constant Voltage or Constant Current Variable Load[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 84-89. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.014
    [4]Shaoyan JIANG, Jingping LI, Zhiping CAI. Intelligent Distributed Voltage-time Dual Strategy Local Fault Identification Method[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 48-52. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.009
    [5]ZHANG Minghan, LU Zikai. Analysis of the Application of Current Transfomer in Low-voltage Flexible DC Microgrid[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 131-136. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.021
    [6]YUAN Kanglong. Analysis of Operation Mode on Induction Voltage and Induction Current of the Circuit Line of the Same Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 65-70. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.012
    [7]Guobin QIU, Jingyi WANG, Panwang LIANG, Yandong WANG. Influence Research on Induced Voltage and Current of Multi AC Transmission Lines to the Power Line Under Construction in the Same Corridor[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(4): 76-81. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.015
    [8]HE Jian. Coordination of the Active Saturated Iron-core Superconductive Fault Current Limiters with Zero-sequence Current Protection of Transmission Lines[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 30-34. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.007
    [9]Xiaodong FENG. Application Technology Research on Saturated Iron-core Superconducting Fault Current Limiter[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 91-95. DOI: 10.16516/j.gedi.issn2095-8676.2015.02.017
    [10]Lei CHEN, Fang GUO. Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 20-27. DOI: 10.16516/j.gedi.issn2095-8676.2015.02.004
  • Cited by

    Periodical cited type(1)

    1. 陈娟,龙德全,贾湘豫,劳日修. 智能电网配电系统自动化控制研究. 电气技术与经济. 2025(04): 334-336 .

    Other cited types(1)

Catalog

    Corresponding author: GUO Fang, fsu_guof@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1044) PDF downloads (516) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return