Advanced Search
CHEN Jianjun. Research on application of dredging technology for steel pipe pile under complex sea conditions in deep sea [J]. Southern energy construction, 2025, 12(1): 109-115. DOI: 10.16516/j.ceec.2024-049
Citation: CHEN Jianjun. Research on application of dredging technology for steel pipe pile under complex sea conditions in deep sea [J]. Southern energy construction, 2025, 12(1): 109-115. DOI: 10.16516/j.ceec.2024-049

Research on Application of Dredging Technology for Steel Pipe Pile Under Complex Sea Conditions in Deep Sea

More Information
  • Received Date: February 21, 2024
  • Revised Date: March 04, 2024
  • Available Online: January 23, 2025
  •   Objective  With the promotion of carbon peak and carbon neutrality strategy, offshore wind power has ushered in a period of rapid growth. In 2023, more than 87 offshore wind power project sites in various provinces and cities across the country have identified investment entities or are carrying out project competition, with an installed capacity of more than 58.9 GW. In the future, the deep-sea foundation type will be mainly based on the four-pile jacket foundation, In the process of steel pipe pile penetrating, the surrounding soil will be disturbed, resulting in silt deposit. If the dredging outcome is not ideal, it will affect the strength of the infrastructure, on the other hand, it will affect the safety of fan hoisting.
      Method  The article took a demonstrative wind farm in the East Guangdong Sea as an example. Firstly, this paper analyzed the causes and hazards of silt deposit in view of the characteristics of the wind farm, such as high water depth, poor visibility, high viscosity and large amount of silt removal. Secondly, combined with the successful application of the demonstrative project, the feasibility of the dredging process was verified. Finally, the dredging process could be further improved from three aspects: process optimization, equipment optimization and design optimization.
      Result  Research has shown that the dredging method is optimized by ultra-high pressure hydraulic dredging and air disturbance dredging, the dredging equipment is optimized by robot technology, the elevation of pile top mud surface is adjusted and the rising space of silt is reserved for design optimization. The improved dredging process adapts to the complex conditions in deep sea, and further effectively improves the efficiency of underwater dredging.
      Conclusion  The improved dredging process can be popularized and applied to subsequent deep-sea wind power projects.
  • [1]
    卢龙成, 孙辉, 安永宁. 海上风电场址浅地层剖面信息采集及关键处理技术 [J]. 水道港口, 2023, 44(3): 473-479. DOI: 10.3969/j.issn.1005-8443.2023.03.024.

    LU L C, SUN H, AN Y N. Shallow stratum profile information aquisition and key processing methods of offshore wind power site [J]. Journal of waterway and harbor, 2023, 44(3): 473-479. DOI: 10.3969/j.issn.1005-8443.2023.03.024.
    [2]
    孙财新, 张波, 唐巍, 等. 海上风电机组国产化研究与实践 [J]. 发电技术, 2023, 44(5): 696-702. DOI: 10.12096/j.2096-4528.pgt.22030.

    SUN C X, ZHANG B, TANG W, et al. Research and practice on localization of offshore wind turbines [J]. Power generation technology, 2023, 44(5): 696-702. DOI: 10.12096/j.2096-4528.pgt.22030.
    [3]
    任灏, 刘博, 刘晓建, 等. 阳江沙扒海上风电三桶吸力桩基础局部冲刷试验研究 [J]. 人民珠江, 2022, 43(5): 107-113. DOI: 10.3969/j.issn.1001-9235.2022.05.016.

    REN H, LIU B, LIU X J, et al. Study on local scour of suction bucket foundations at offshore wind farms in Shapa of Yangjiang [J]. Pearl river, 2022, 43(5): 107-113. DOI: 10.3969/j.issn.1001-9235.2022.05.016.
    [4]
    刘博, 马兆荣, 刘晓建, 等. 阳江沙扒海上风电三桶吸力桩防冲刷试验研究 [J]. 人民珠江, 2023, 44(7): 55-63. DOI: 10.3969/j.issn.1001-9235.2023.07.008.

    LIU B, MA Z R, LIU X J, et al. Study on scour prevention test of three-bucket suction piles for offshore wind farms in Shapa, Yangjiang [J]. Pearl river, 2023, 44(7): 55-63. DOI: 10.3969/j.issn.1001-9235.2023.07.008.
    [5]
    林建熙, 刘必成, 肖晃庆, 等. 大规模海上风电接入的受端电网频率特性 [J]. 广东电力, 2023, 36(3): 23-31. DOI: 10.3969/j.issn.1007-290X.2023.03.003.

    LIN J X, LIU B C, XIAO H Q, et al. Frequency characteristics of receiving end power grid for large-scale offshore wind power access [J]. Guangdong electric power, 2023, 36(3): 23-31. DOI: 10.3969/j.issn.1007-290X.2023.03.003.
    [6]
    周德棕, 毕明君, 章海东, 等. 大直径单桩基础冲刷防护范围及防护效果试验研究 [J]. 南方能源建设, 2023, 10(1): 72-80. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.009.

    ZHOU D Z, BI M J, ZHANG H D, et al. Experimental research on scour protection range and protection effect of large diameter monopile foundation [J]. Southern energy construction, 2023, 10(1): 72-80. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.009.
    [7]
    刘玉新, 郭越, 黄超. 中外海上风电发展形势和政策比较研究 [J]. 科技管理研究, 2023, 43(8): 65-70. DOI: 10.3969/j.issn.1000-7695.2023.8.008.

    LIU Y X, GUO Y, HUANG C. A comparative study on the development situation and policies of offshore wind power in China and abroad [J]. Science and technology management research, 2023, 43(8): 65-70. DOI: 10.3969/j.issn.1000-7695.2023.8.008.
    [8]
    邵聪颖, 乐治济, 王李吉. 海洋污损生物对海上风机基础的影响 [J]. 中国海洋平台, 2019, 34(4): 45-52. DOI: 10.3969/j.issn.1001-4500.2019.04.008.

    SHAO C Y, LE Z J, WANG L J. Effect of marine fouling organism on offshore wind turbine foundation [J]. China offshore platform, 2019, 34(4): 45-52. DOI: 10.3969/j.issn.1001-4500.2019.04.008.
    [9]
    李辉, 林振东. 深水导管架式风机基础安装平台设计及施工 [J]. 中国港湾建设, 2021, 41(2): 62-66. DOI: 10.7640/zggwjs202102013.

    LI H, LIN Z D. Design and construction of deep-water jacket fan foundation installation platform [J]. China harbour engineering, 2021, 41(2): 62-66. DOI: 10.7640/zggwjs202102013.
    [10]
    朱嵘华, 栾富豪, 赵一凡, 等. 海上风电植入型嵌岩单桩施工关键技术 [J]. 机电工程技术, 2022, 51(10): 7-10. DOI: 10.3969/j.issn.1009-9492.2022.10.002.

    ZHU R H, LUAN F H,ZHAO Y F, et al. Key technologies for construction of rock-socketed monopile for offshore wind power [J]. Mechanical & electrical engineering technology, 2022, 51(10): 7-10. DOI: 10.3969/j.issn.1009-9492.2022.10.002.
    [11]
    丁华星, 邹贵彬, 王凤莲, 等. 一种适用于深远海全直流风电汇集网络的保护方法 [J]. 电力系统保护与控制, 2024, 52(2): 15-25. DOI: 10.19783/j.cnki.pspc.230598.

    DING H X, ZOU G B, WANG F L, et al. A fault protection method of a DC collection network for an all-DC offshore wind farm [J]. Power system protection and control, 2024, 52(2): 15-25. DOI: 10.19783/j.cnki.pspc.230598.
    [12]
    李保洋. 某近海风电场风机基础选型设计 [J]. 南方能源建设, 2023, 10(4): 166-173. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.017.

    LI B Y. Selection and design of wind turbine foundation for an offshore wind farm [J]. Southern energy construction, 2023, 10(4): 166-173. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.017.
    [13]
    王李吉. 导管架大直径短桩竖向承载力CPTU方法应用分析 [J]. 南方能源建设, 2023, 10(4): 193-199. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.020.

    WANG L J. Application analysis of CPTU method for jacket large diameter short pile axial bearing capacity [J]. Southern energy construction, 2023, 10(4): 193-199. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.020.
    [14]
    王仲梅, 赵荥, 张文皎, 等. 解放村水库清淤方案制定研究 [J]. 人民黄河, 2023, 45(增刊1): 5-6, 20.

    WANG Z M, ZHAO X, ZHANG W J, et al. Study on the formulation of dredging scheme for Jiefang Village reservoir [J]. Yellow river, 2023, 45(Suppl.1): 5-6, 20.
    [15]
    岳文飞. 基于疏浚土资源化利用技术的入库航道清淤工艺 [J]. 水运工程, 2023(增刊2): 81-85. DOI: 10.3969/j.issn.1002-4972.2023.z2.018.

    YUE W F. Desilting process for inbound channel based on resource utilization technology for dredged soil [J]. Port & waterway engineering, 2023(Suppl.2): 81-85. DOI: 10.3969/j.issn.1002-4972.2023.z2.018.
    [16]
    张榴梅, 陈新, 向文俊, 等. 气动式清淤方案施工扰动模型研究 [J]. 人民黄河, 2023, 45(增刊1): 66-67, 69.

    ZHANG L M, CHEN X, XIANG W J, et al. Study on construction disturbance model of pneumatic dredging scheme [J]. Yellow river, 2023, 45(Suppl.1): 66-67, 69.
    [17]
    刘国瑞, 杨建华, 张润喜, 等. 应用有限元法的环保柱式清淤绞刀设计 [J]. 水运工程, 2022(4): 186-190. DOI: 10.3969/j.issn.1002-4972.2022.04.033.

    LIU G R, YANG J H, ZHANG R X, et al. Design of environmental-friendly cylindrical dredging cutter by finite element [J]. Port & waterway engineering, 2022(4): 186-190. DOI: 10.3969/j.issn.1002-4972.2022.04.033.
    [18]
    王杰, 熊新宇, 贾军利, 等. 适用于渠道及倒虹吸的水下清淤设备设计与应用 [J]. 人民长江, 2021, 52(增刊1): 237-239, 256. DOI: 10.16232/j.cnki.1001-4179.2021.S1.056.

    WANG J, XIONG X Y, JIA J L, et al. Design and application of underwater dredging equipment for channel and inverted siphon [J]. Yangtze river, 2021, 52(Suppl.1): 237-239, 256. DOI: 10.16232/j.cnki.1001-4179.2021.S1.056.
    [19]
    朱秀全, 许慧泽. 河道清淤治理及施工方案设计 [J]. 工程建设与设计, 2023(20): 48-50. DOI: 10.13616/j.cnki.gcjsysj.2023.10.215.

    ZHU X Q, XU H Z. River dredging treatment and construction scheme design [J]. Construction & design for engineering, 2023(20): 48-50. DOI: 10.13616/j.cnki.gcjsysj.2023.10.215.
    [20]
    周成湘. 中小型自带搅拌清淤机 [J]. 工程建设, 2011, 43(1): 54-55. DOI: 10.3969/j.issn.1673-8993.2011.01.013.

    ZHOU C X. Medium and small sized self-mixing cleaner [J]. Engineering construction, 2011, 43(1): 54-55. DOI: 10.3969/j.issn.1673-8993.2011.01.013.
    [21]
    陈珂, 张力, 廖侃. 浅析海上风电灌浆连接段力学研究发展及趋势 [J]. 南方能源建设, 2023, 10(1): 57-63. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.007.

    CHEN K, ZHANG L, LIAO K. Brief analysis of the development of mechanical research and trends of grouted connection of offshore wind turbine [J]. Southern energy construction, 2023, 10(1): 57-63. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.007.
  • Related Articles

    [1]HUANG Sui, CAI Yanfeng, WANG Jun, ZHOU Chuan. Applicability Analysis of Sea Surface Wind Field Data for Yangjiang Offshore Wind Farm in Guangdong Province[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(6): 111-123. DOI: 10.16516/j.ceec.2024.6.12
    [2]HUANG Zhijun, SUN Lingyun. Exploring the Path of Cost Reduction and Efficiency Enhancement for Deep Sea Offshore Wind Power Projects[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 34-37. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.005
    [3]LIU Pin, HAN Ronggui, REN Zhongjin, LÜ Linlin. Power Optimization of Wave Energy Converter (WEC) Arrray Based on Sea Conditions of a Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 139-145. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.018
    [4]LI Jiayi, GU Shunping, GU Mengjun, ZHANG Heng, SHA Rui. Boundary Reconstruction of Tokamak Plasma Based on Deep Neural Networks[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 77-81. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.010
    [5]Zheng SHI, Guiju CHEN, Jinfang LIANG. Influence of Hull Deformation on Sea Transportation Design for Topside Module of Offshore Substation[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(1): 58-63. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.009
    [6]Kaijian FENG, Taofei KU, Zuwei YUAN, Mingzhe WEN, Shaoxia XING. Preliminary Research on the Pricing System of Distribution Network Project in South China Sea Islands[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 59-64. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.009
    [7]Sheng LIU. Research on Electrical Application Technology of Intensive Offshore Converter Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 32-36. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.005
    [8]Qiang ZHANG, Chang GE, Xiaolei SHEN, Jin SHANG. Numerical Simulation Research on the Vertical Bearing Capacity of the Single Pile Foundation in Zhugensha Sea Area[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 44-50. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.006
    [9]Wei SHI, Kan ZHENG, Nianxin REN. Dynamic Analysis of Semi-type Floating Offshore Wind Turbine with Failure Conditions Under Metocean Conditions in South China Sea[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 12-20. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.002
    [10]Rongsheng YANG, Qian WANG. Application of Deep Mixing Technique on Reinforcement of Nuclear Safety Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(3): 104-107. DOI: 10.16516/j.gedi.issn2095-8676.2016.03.022

Catalog

    CHEN Jianjun, cjj2012@sina.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (287) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return