Advanced Search
TANG Binwei, CHEN Shuo, HUANG Liling. Hardware-in-loop Simulation of a Wind Turbine Based on Bladed and HiGale[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-266
Citation: TANG Binwei, CHEN Shuo, HUANG Liling. Hardware-in-loop Simulation of a Wind Turbine Based on Bladed and HiGale[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-266

Hardware-in-loop Simulation of a Wind Turbine Based on Bladed and HiGale

More Information
  • Received Date: August 02, 2024
  • Revised Date: December 09, 2024
  •   Objective  The structure of the wind power generation system is complex, and in order to achieve efficient testing and control algorithm verification of the wind power generation system, it is necessary to simulate the wind power generation system in real time. At present, there is a lack of domestic real-time simulation and verification platform for wind power generation systems in the market.
      Method  A hardware-in-the-loop co-simulation system architecture based on Bladed and HiGale was proposed, and the real-time co-simulation of Bladed and HiGale through BHTM was realized for hardware-in-the-loop testing of wind power system controllers.
      Result  In this paper, a typical semi-direct drive permanent magnet synchronous motor wind power generation unit is taken as an example, and a hardware-in-the-loop accompanying test model is built, which is mainly composed of wind field model, mechanical transmission and electrical model, and the co-simulation platform was used to test the performance of the hardware under three working conditions: grid-connected control, pitch control and low-voltage ride-through.
      Conclusion  On the one hand, the experimental results verify the effectiveness of grid-connected control and pitch control algorithms. On the other hand, it is also proved that the platform can provide reliable technical support in the development and testing stage of wind power generation systems, which is of great engineering significance for improving system R&D efficiency and saving R&D costs.
  • [1]
    马宏忠. 风力发电机及其控制 [M]. 北京: 中国水利水电出版社, 2016.

    MA H Z. Wind turbine generator and control [M]. Beijing: China Water & Power Press, 2016.
    [2]
    倪道俊, 肖瑶瑶. 海上风力发电复合筒型基础拖航稳性研究 [J]. 南方能源建设, 2021, 8(4): 26-31. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.004.

    NI D J, XIAO Y Y. Research on towing stability of composite bucket foundation for offshore wind power generation [J]. Southern energy construction, 2021, 8(4): 26-31. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.004.
    [3]
    孙睿, 葛文澎, 吴迪, 等. 半直驱永磁风力发电机散热性能影响因素研究 [J]. 南方能源建设, 2023, 10(4): 71-81. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.007.

    SUN R, GE W P, WU D, et al. Research on factors influencing the heat dissipation performance of semi-direct drive permanent magnet wind generator [J]. Southern energy construction, 2023, 10(4): 71-81. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.007.
    [4]
    李鹏. 风力发电机组状态监测与故障诊断技术分析 [J]. 中国机械, 2024(24): 66-69.

    LI P. Analysis of status monitoring and fault diagnosis technology for wind turbine generator system [J]. Machine China, 2024(24): 66-69.
    [5]
    熊康, 李源, 马奔奔, 等. 海上直驱风力发电机组主轴轴承振动测试研究 [J/OL]. (2024-06-19) [2024-08-03]. 南方能源建设, 2024, 11: 1-12. http://kns.cnki.net/kcms/detail/44.1715.TK.20240618.0946.004.html.

    XIONG K, LI Y, MA B B, et al. Research on vibration testing of main shaft bearing of offshore direct-drive wind turbine generator system [J/OL]. (2024-06-19) [2024-08-03]. Southern energy construction, 2024, 11: 1-12. http://kns.cnki.net/kcms/detail/44.1715.TK.20240618.0946.004.html.
    [6]
    李泽英, 路发志. 风力发电设备的运行管理措施分析 [J]. 电子技术, 2023, 52(6): 210-211.

    LI Z Y, LU F Z. Analysis of operation management measures for wind power generation equipment [J]. Electronic technique, 2023, 52(6): 210-211.
    [7]
    GE Renewable Technologies Wind B. V. Patent issued for safety structure for performing servicing operations in a wind turbine and method for its installation: USPTO 9869294 [P/OL]. (2016-03-10) [2024-08-03]. https://patents.justia.com/patent/9869294.
    [8]
    谢楠, 杨沛豪, 何萍, 等. 基于虚拟阻抗的储能微网VSG控制策略研究 [J]. 南方能源建设, 2022, 9(增刊2): 90-97. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.015.

    XIE N, YANG P H, HE P, et al. Research on VSG Control strategy for energy storage microgrid based on virtual impedance [J]. Southern energy construction, 2022, 9(Suppl.2): 90-97. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.015.
    [9]
    韩梦华. 直驱型永磁同步风力发电系统控制策略研究 [D]. 大庆: 东北石油大学, 2023. DOI: 10.26995/d.cnki.gdqsc.2023.000390.

    HAN M H. Research on control strategy of direct-drive permanent magnet synchronous wind power generation system [D]. Daqing: Northeast Petroleum University, 2023. DOI: 10.26995/d.cnki.gdqsc.2023.000390.
    [10]
    陈晶. 导管架式海上风电基础结构分析 [D]. 天津: 天津大学, 2014. DOI: 10.7666/d.D654203.

    CHEN J. Structure analysis of support structurefor jacket offshore wind turbine [D]. Tianjin: Tianjin University, 2014. DOI: 10.7666/d.D654203.
    [11]
    赵浩然, 孟铃涵, 江艺宝, 等. 面向新型电力系统的实时仿真平台综述与展望 [J]. 高电压技术, 2024, 50(10): 4611-4626. DOI: 10.13336/j.1003-6520.hve.20231802.

    ZHAO H R, MENG L H, JIANG Y B, et al. Overview and prospect of real time simulation platforms for new-type power systems [J]. High voltage engineering, 2024, 50(10): 4611-4626. DOI: 10.13336/j.1003-6520.hve.20231802.
    [12]
    夏长亮. 永磁风力发电系统及其功率变换技术 [J]. 电工技术学报, 2012, 27(11): 1-13. DOI: 10.19595/j.cnki.1000-6753.tces.2012.11.001.

    XIA C L. Wind energy conversion system based on PMSG and its power converter technology [J]. Transactions of China electrotechnical society, 2012, 27(11): 1-13. DOI: 10.19595/j.cnki.1000-6753.tces.2012.11.001.
    [13]
    张永明, 史伟伟. 风力发电机低电压穿越技术发展现状 [J]. 电机与控制应用, 2012, 39(7): 6-11. DOI: 10.3969/j.issn.1673-6540.2012.07.003.

    ZHANG Y M, SHI W W. Wind power generator low voltage ride-through technique development [J]. Motor and control applications, 2012, 39(7): 6-11. DOI: 10.3969/j.issn.1673-6540.2012.07.003.
    [14]
    耿华, 何长军, 刘浴霜, 等. 新能源电力系统的暂态同步稳定研究综述 [J]. 高电压技术, 2022, 48(9): 3367-3383. DOI: 10.13336/j.1003-6520.hve.20221231.

    GENG H, HE C J, LIU Y S, et al. Overview on transient synchronization stability of renewable-rich power systems [J]. High voltage engineering, 2022, 48(9): 3367-3383. DOI: 10.13336/j.1003-6520.hve.20221231.
    [15]
    许凌峰. 变桨距风力发电机组智能控制研究 [D]. 北京: 华北电力大学(北京), 2009. DOI: 10.7666/d.D517708.

    XU L F. Research on intelligent control for variable pitch wind turbines [D]. Beijing: North China Electric Power University (Beijing), 2009. DOI: 10.7666/d.D517708.
    [16]
    黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展 [J]. 力学进展, 2013, 43(5): 472-525. DOI: 10.6052/1000-0992-13-063.

    LI Z W, HE D X. Reviews of fluid dynamics researches in wind energy engineering [J]. Advances in mechanics, 2013, 43(5): 472-525. DOI: 10.6052/1000-0992-13-063.
    [17]
    王鑫达, 张澳, 李少林, 等. 电压源型双馈风电机组低压穿越控制策略 [J]. 电机与控制学报, 2023, 27(3): 21-29. DOI: 10.15938/j.emc.2023.03.003.

    WANG X D, ZHANG A, LI S L, et al. Low voltage ride through control strategy of VSG controlled doubly fed wind turbine [J]. Electric machines and control, 2023, 27(3): 21-29. DOI: 10.15938/j.emc.2023.03.003.
    [18]
    李思宇, 方磊, 张保平, 等. 电网末端风电场SVG设备高低压穿越功能改造与测试 [J]. 电工技术, 2020(22): 56-58. DOI: 10.19768/j.cnki.dgjs.2020.22.021.

    LI S Y, FANG L, ZHANG B P, et al. Transformation and test of high and low voltage crossing function of SVG equipment in wind farm at the end of power grid [J]. Electric engineering, 2020(22): 56-58. DOI: 10.19768/j.cnki.dgjs.2020.22.021.
    [19]
    杨旼才, 余建峰, 欧阳金鑫, 等. 电网故障下永磁直驱风电机组机电暂态全过程等值建模方法 [J]. 电工电能新技术, 2021, 40(5): 22-33. DOI: 10.12067/ATEEE2101031.

    YANG W C, YU J F, OUYANG J X, et al. Equivalent modeling method of whole electromechanical transient state of permanent magnet direct-drive wind turbine under grid fault [J]. Advanced technology of electrical engineering and energy, 2021, 40(5): 22-33. DOI: 10.12067/ATEEE2101031.
    [20]
    胡家兵, 贺益康. 双馈风力发电系统的低压穿越运行与控制 [J]. 电力系统自动化, 2008(2): 49-52. DOI: 10.3321/j.issn:1000-1026.2008.02.012.

    HU J B, HE Y K. Low voltage ride through operation and control of doubly fed induction generator wind turbines [J]. Automation of electric power systems, 2008(2): 49-52. DOI: 10.3321/j.issn:1000-1026.2008.02.012.
  • Related Articles

    [1]YUAN Honglei, LIU Xinlong, LIU Xin, CHEN Rongchao. Operation Control and Simulation of Supercritical Reheat Back Pressure Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 78-88. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.009
    [2]WANG Xiaohu. Research and Improvement of Offshore Ship Fusion Recognition Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 131-137. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.013
    [3]YANG Zhiyuan, ZHANG Shipeng, SUN Hao. Cyber-Physical Coordinated Assessments with Incorporations of Transient Stability Analysis[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.001
    [4]Zhanzi GAN, Yuming ZHANG. Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 141-147. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.021
    [5]LI Wenbin, CHEN Yi, LI Xiaobin, XIE Zhiyong, ZHOU Fang. Selection Algorithm of Ropes for Power Transmission Lines Crossing the Sealing Network[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 137-143. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.022
    [6]Chuhong HUANG, Xin LIU. Design and Application of Multi-energy Joint Operation Control System[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 54-58. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.009
    [7]Di WU, Huaixi LIU, Desheng MIAO. Research on Offshore Wind Farm Units Layout Considering the Algorithm of Wake Model and the Change of Wind Direction[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 54-58. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.010
    [8]Hailin GE, Haoyong CHEN, Fei LIU. Optimization of District Electricity and Heating System Based on Genetic Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 25-30,37. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.004
    [9]Fang GUO, Changhong DENG, Yi LIAO, Maoqiang TAN, Yanzhi HE. Research on Improvement of Micro-grid Power Quality Base on the Advanced MPPT Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 71-76. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.014
    [10]Li LI, Yue ZHUO. An Improved Algorithm Based on the Asymmetric of Communication Transmission Links[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 62-65. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.011

Catalog

    HUANG Liling, huangliling@mywind.com.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (41) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return