• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 11 Issue 3
May  2024
Turn off MathJax
Article Contents

ZHOU Hongxia, WAN Yinxiang, ZHOU Bowen, et al. Development of calorimeter target for long pulse high power negative ion source test platform [J]. Southern energy construction, 2024, 11(3): 81-86 doi:  10.16516/j.ceec.2024.3.09
Citation: ZHOU Hongxia, WAN Yinxiang, ZHOU Bowen, et al. Development of calorimeter target for long pulse high power negative ion source test platform [J]. Southern energy construction, 2024, 11(3): 81-86 doi:  10.16516/j.ceec.2024.3.09

Development of Calorimeter Target for Long Pulse High Power Negative Ion Source Test Platform

doi: 10.16516/j.ceec.2024.3.09
  • Received Date: 2024-05-06
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2024-05-13
  • Available Online: 2024-05-30
  • Publish Date: 2024-05-10
  •   Introduction  High energy, strong current, and long pulse neutral beam negative ion source technology are one of the core technologies for achieving combustion conditions in magnetic confinement fusion reactor plasma. To meet the beam diagnostic requirements of the long pulse high-power negative ion source experimental platform under the parameters of 200 kV/20 A, a calorimeter target has been developed for intercepting negative ion beams or neutral beams, diagnosing the power density distribution and beam divergence angle of the two beams, as well as the neutralization efficiency of negative ions and other performance parameters.   Method  Based on the existing structure of the experimental platform vacuum chamber and the size of the extraction electrode, the Matlab program was used to obtain the power density distribution and beam spot size of the negative ion beam generated by the negative ion source at the front end of the calorimeter target at a beam divergence angle of 1° under this parameter. Subsequently, the physical structure of the calorimeter target with a V-shaped target plate was designed. On this basis, Workbench software was used to simulate the thermal load of the oxygen-free copper V-shaped target plate structure under full power operation and obtain the temperature distribution of the calorimeter target during long pulse operation with a water flow rate of 80 m3/h. The highest temperature was 610 °C.   Results  Based on the simulation calculation results, and in combination with the engineering structure and diagnostic requirements of the experimental platform, the engineering design of the calorimeter target was completed.   Conclusion  The calorimeter target adopts magnetic fluid vacuum sealing to achieve the opening and closing of the V-shaped target plate, and a thermocouple array is arranged on the back of the target plate to monitor the temperature of the target plate in real time. The calorimeter target engineering has a compact structure, and its installation size can be compatible with ion beam diagnostic vacuum chambers and neutral beam diagnostic vacuum chambers, meeting diagnostic requirements and enabling safe operation with long pulses.
  • [1] SARTORI E, AGOSTINI M, BARBISAN M, et al. First operations with caesium of the negative ion source SPIDER [J]. Nuclear fusion, 2022, 62(8): 086022. DOI:  10.1088/1741-4326/ac715e.
    [2] IKEDA Y, UMEDA N, AKINO N, et al. Present status of the negative ion based NBI system for long pulse operation on JT-60U [J]. Nuclear fusion, 2006, 46(6): S211-S219. DOI:  10.1088/0029-5515/46/6/S02.
    [3] 王腾. 超导磁体技术与磁约束核聚变 [J]. 南方能源建设, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.

    WANG T. Superconducting magnet technology and magnetically confined fusion [J]. Southern energy construction, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.
    [4] FRANZEN P, FANTZ U, WÜNDERLICH D, et al. Progress of the ELISE test facility: results of caesium operation with low RF power [J]. Nuclear fusion, 2015, 55(5): 053005. DOI:  10.1088/0029-5515/55/5/053005.
    [5] IKEDA K, GENG S F, TSUMORI K, et al. Recent studies of hydrogen negative ion source and beam production for NBI in large helical device [J]. Plasma and fusion research, 2016, 11: 2505038. DOI:  10.1585/pfr.11.2505038.
    [6] KURIYAMA M, AOYAGI T, AKINO N, et al. Development of negative-ion based NBI system for JT-60 [J]. Journal of the atomic energy society of Japan, 1996, 38(11): 912-922. DOI:  10.3327/jaesj.38.912.
    [7] 姜韶风, 周才品, 王德泰, 等. HL-1M中性束注入系统研制及中性束加热初步实验 [J]. 核聚变与等离子体物理, 1999, 19(4): 213-218. DOI:  10.16568/j.0254-6086.1999.04.005.

    JIANG S F, ZHOU C P, WANG D T, et al. Development of neutral beam injection system and preliminary heating experiments on the HL-1M tokamak [J]. Nuclear fusion and plasma physics, 1999, 19(4): 213-218. DOI:  10.16568/j.0254-6086.1999.04.005.
    [8] 雷光玖, 姜韶风, 钟光武, 等. HL-2A中性束大功率离子源的研制 [J]. 中国物理C: 英文版, 2008, 32(增刊1): 271-273.

    LEI G J, JIANG S F, ZHONG G W, et al. Ion source for HL-2A nuetral beam injection [J]. Chinese physics C, 2008, 32(Suppl.1): 271-273.
    [9] 邹桂清, 钟光武, 雷光玖, 等. 大功率多磁极会切场离子源的弧放电特性分析 [J]. 中国物理C: 英文版, 2008, 32(增刊1): 283-285.

    ZOU G Q, ZHONG G W, LEI G J, et al. Arc discharge performance analysis for a high power bucket ion source [J]. Chinese physics C, 2008, 32(Suppl.1): 283-285.
    [10] 余珮炫, 魏会领, 邹桂清, 等. HL-2A装置NBI加热束线束光学特性 [J]. 强激光与粒子束, 2016, 28(5): 054001. DOI: 10.11884/HPLPB2016 28.054001.

    YU P X, WEI H L, ZOU G Q, et al. Beam optic characteristics of neutral beam heating line on HL-2A [J]. High power laser and particle beams, 2016, 28(5): 054001. DOI: 10.11884/HPLPB2016 28.054001.
    [11] 魏会领, 曹建勇, 余珮炫, 等. HL-2M装置5 MW中性束加热束线离子源放电室研制 [J]. 强激光与粒子束, 2020, 32(4): 046001. DOI:  10.11884/HPLPB202032.190275.

    WEI H L, CAO J Y, YU P X, et al. Development of ion source discharge chamber for the 5 MW neutral beam heating line on HL-2M device [J]. High power laser and particle beams, 2020, 32(4): 046001. DOI:  10.11884/HPLPB202032.190275.
    [12] 万银祥, 魏会领, 耿少飞, 等. 中性束离子源实验平台80 kV/50 A/20 ms高压电源设计分析与优化 [J]. 核聚变与等离子体物理, 2023, 43(4): 373-379. DOI: 10.16568/j.0254-6086.2023 04001.

    WAN Y X, WEI H L, GENG S F, et al. Design analysis and optimization of 80 kV/50 A/20 ms high voltage power supply for neutral beam ion source experimental platform [J]. Nuclear fusion and plasma physics, 2023, 43(4): 373-379. DOI: 10.16568/j.0254-6086.2023 04001.
    [13] 张贤明. 射频负离子源实验研究原型I(THOR I)工程设计和制造技术要求 [R]. 成都: 核工业西南物理研究院, 2018.

    ZHANG X M. Engineering design and manufacturing technical requirements for prototype I (THOR I) of RF negative ion source experimental research [R]. Chengdu: Southwestern Institute of Physics, 2018.
    [14] 于祺, 李明, 赵淼, 等. 射频负离子源200 kV高压平台磁缓冲器系统中磁芯的性能测试和分析 [J]. 核聚变与等离子体物理, 2023, 43(3): 263-269. DOI:  10.16568/j.0254-6086.202303003.

    YU Q, LI M, ZHAO M, et al. Performance test and analysis of the magnetic core in a core snubber system for 200 kV high voltage deck of radio frequency negative ion source [J]. Nuclear fusion and plasma physics, 2023, 43(3): 263-269. DOI:  10.16568/j.0254-6086.202303003.
    [15] 罗怀宇, 曹建勇, 耿少飞, 等. HL-2M中性束负离子试验源磁场位形及引出结构模拟分析 [J]. 核聚变与等离子体物理, 2018, 38(3): 281-286. DOI:  10.16568/j.0254-6086.201803006.

    LUO H Y, CAO J Y, GENG S F, et al. Simulation and analysis of magnetic field configuration and extraction structure of the test experimental negative ion source for HL-2M [J]. Nuclear fusion and plasma physics, 2018, 38(3): 281-286. DOI:  10.16568/j.0254-6086.201803006.
    [16] GENG S F, WEI H L, ZHOU B W, et al. First beam extraction experiment from a prototype filament-arc driven negative ion source [J]. Fusion engineering and design, 168: 112671. DOI:  10.1016/j.fusengdes.2021.112671.
    [17] RIZZOLO A, TOLLIN M, BROMBIN M, et al. Final design of the diagnostic calorimeter for the negative ion source SPIDER [J]. Fusion engineering and design, 2017, 123: 768-772. DOI:  10.1016/j.fusengdes.2017.05.003.
    [18] NOCENTINI R, BONOMO F, FANTZ U, et al. A new tungsten wire calorimeter for the negative ion source testbed BATMAN upgrade [J]. Fusion engineering and design, 2019, 146: 433-436. DOI:  10.1016/j.fusengdes.2018.12.085.
    [19] 曹建勇. 孔形引出电极的4离子源NBI注入器计算程序 [R]. 成都: 核工业西南物理研究院, 2009.

    CAO J Y. The calculation code for NBI injector of 4 ion sources with circle apertures electrode [R]. Chengdu: Southwestern Institute of Physics, 2009.
    [20] 曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展 [J]. 强激光与粒子束, 2018, 30(10): 106001. DOI:  10.11884/HPLPB201830.180051.

    CAO J Y, WEI H L, LU H, et al. Latest progress of development of the neutral beam injection heating system on HL-2M tokamak [J]. High power laser and particle beams, 2018, 30(10): 106001. DOI:  10.11884/HPLPB201830.180051.
    [21] 曹建勇, 魏会领, 阚存东, 等. 一种基于磁流体真空密封的量热靶水路及靶板张合结构: 201911271767.7 [P]. 2021-06-18.

    CAO J Y, WEI H L, KAN C D, et al. A calorimetric target waterway and target plate tensioning structure based on magnetic fluid vacuum sealing: 201911271767.7 [P]. 2021-06-18.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(7)

Article Metrics

Article views(671) PDF downloads(23) Cited by()

Related

Development of Calorimeter Target for Long Pulse High Power Negative Ion Source Test Platform

doi: 10.16516/j.ceec.2024.3.09

Abstract:   Introduction  High energy, strong current, and long pulse neutral beam negative ion source technology are one of the core technologies for achieving combustion conditions in magnetic confinement fusion reactor plasma. To meet the beam diagnostic requirements of the long pulse high-power negative ion source experimental platform under the parameters of 200 kV/20 A, a calorimeter target has been developed for intercepting negative ion beams or neutral beams, diagnosing the power density distribution and beam divergence angle of the two beams, as well as the neutralization efficiency of negative ions and other performance parameters.   Method  Based on the existing structure of the experimental platform vacuum chamber and the size of the extraction electrode, the Matlab program was used to obtain the power density distribution and beam spot size of the negative ion beam generated by the negative ion source at the front end of the calorimeter target at a beam divergence angle of 1° under this parameter. Subsequently, the physical structure of the calorimeter target with a V-shaped target plate was designed. On this basis, Workbench software was used to simulate the thermal load of the oxygen-free copper V-shaped target plate structure under full power operation and obtain the temperature distribution of the calorimeter target during long pulse operation with a water flow rate of 80 m3/h. The highest temperature was 610 °C.   Results  Based on the simulation calculation results, and in combination with the engineering structure and diagnostic requirements of the experimental platform, the engineering design of the calorimeter target was completed.   Conclusion  The calorimeter target adopts magnetic fluid vacuum sealing to achieve the opening and closing of the V-shaped target plate, and a thermocouple array is arranged on the back of the target plate to monitor the temperature of the target plate in real time. The calorimeter target engineering has a compact structure, and its installation size can be compatible with ion beam diagnostic vacuum chambers and neutral beam diagnostic vacuum chambers, meeting diagnostic requirements and enabling safe operation with long pulses.

ZHOU Hongxia, WAN Yinxiang, ZHOU Bowen, et al. Development of calorimeter target for long pulse high power negative ion source test platform [J]. Southern energy construction, 2024, 11(3): 81-86 doi:  10.16516/j.ceec.2024.3.09
Citation: ZHOU Hongxia, WAN Yinxiang, ZHOU Bowen, et al. Development of calorimeter target for long pulse high power negative ion source test platform [J]. Southern energy construction, 2024, 11(3): 81-86 doi:  10.16516/j.ceec.2024.3.09
    • 中性束注入加热效率高,加热效果明显,已广泛应用于磁约束聚变实验装置[1-3]。随着磁约束聚变装置规模和运行参数的不断提高,基于负离子源、长脉冲、高功率准稳态中性束注入(Neutral Beam Injection, NBI)加热技术已成为国内外磁约束聚变领域研究的热点[4-6]

      核工业西南物理研究院(Southwest Institute of Physics, SWIP)自20世纪70年代就开始了中性束加热技术研究,先后研制了HL-1M[7]、HL-2A[8-10]和HL-3[11-12]托卡马克装置的中性束加热束线。HL-3托卡马克装置5 MW中性束注入加热束线由SWIP独立设计研制,于2023年7月首次注入加热,取得明显加热效果,助力HL-3托卡马克装置分别实现等离子体电流为500 kA和国内首次1 000 kA条件下的高约束H模放电。2016年,SWIP开始了中性束负离子源技术研究,先后研制了单驱动RF射频负离子源[13-14]、热阴极弧放电负离子源[15-16]、热阴极弧放电和RF混合驱动放电负离子源,以及多驱动RF负离子源,负离子束能量达到200 keV,负离子束流达到安培量级。为开展更高参数的负离子源关键技术研究,SWIP正在建设堆量级长脉冲高功率负离子源实验平台。

      实验平台的真空室由5个不同功能的真空室组成,负离子束在离子源真空室中产生并加速,经过离子束流诊断真空室后在中性化器真空室与气靶碰撞,部分负离子发生中性化,负离子束转化成负离子束和中性束混合束。进入中性束流诊断真空室后,混合束中的负离子被偏转磁体偏转掉,成为只含中性粒子的中性束,最后进入远红外诊断真空室,长脉冲高功率负离子源实验平台真空室结构如图1所示。

      Figure 1.  Vacuum chamber model of calorimeter target for long pulse high power negative ion source test platform

      在NBI实验平台和束线上,量热靶用于诊断束截面功率密度分布、中性化效率和束发散角等性能参数,是必不可少的核心部件[17-18]。量热靶安装在离子束流诊断真空室或中性束流诊断真空室内,分别截获负离子束和中性束,诊断两种束功率密度分布和束发散角以及负离子的中性化效率等。

      根据实验平台诊断需求,结合束功率密度分布、束斑尺寸和真空室工程结构,基于Workbench软件对量热靶热负荷的模拟计算分析结果,完成量热靶的工程结构设计。

    • 长脉冲高功率负离子源实验平台在一期建设完成后,可调试的负离子源的最高参数为200 kV/20 A。以西物创新项目中研制的一套热阴极和RF混合放电负离子源为例,负离子加速器电极上束流引出区范围为24 cm×110 cm。当负离子源引出束流参数达到200 kV/20 A时,负离子束功率为4 MW。以负离子中性化效率为60%计算,中性束功率则为2.4 MW。即量热靶进行束流诊断时,直接轰击在量热靶的靶板上束流最大功率为4 MW。为确保束引出时量热靶运行安全,采用自主开发的束功率传输计算代码计算了离引出面3.5 m处的束功率分布情况。束功率传输计算代码采用Matlab脚本,将引出的多个小孔高斯束叠加,计算任意位置处的功率分布,同时高斯束考虑一定的束发散角[19]。在束发散角为1°的情况下,量热靶前端(距离束引出面3.5 m)束分布情况如图2所示,最高负离子束截面功率密度为1.45 kW/cm2,功率密度大于0.4 kW/cm2的束斑范围是26 cm×114 cm。

      Figure 2.  Power density distribution of negative ion beam

      综合考虑价格和导热性,采用无氧铜作为量热靶的靶板材料。为增加负离子束轰击面积以降低轰击在靶板上的功率密度,量热靶采用了V字形靶板结构,两个靶板的夹角为36°,单个靶板与束传输方向夹角为18°,如图3所示。采用这种结构能够将最高的功率密度从1.45 kW/cm2 降低为0.54 kW/cm2。两个靶板长度分别为1 070 mm和1 050 mm,右侧靶板稍长,以确保完全截获束流。单个靶板厚度为25 mm,高度为1 800 mm。每个靶板布置了26根通径为12 mm的水道,以便冷却水通过热交换将靶板上的热量带走,防止热量沉积,监测靶板的水流量和进出水温升,可以算出束功率。保证靶板安全运行。在靶板的背面布置热电偶阵,可以实时监测靶板不同位置的温度变化,从而计算截获的功率密度分布、束发散角和中性化效率。

      Figure 3.  V-shaped target plate

      靶板的能量传递主要方式是热传导和强制对流换热。利用Workbench模拟靶板的传热过程,可以计算截获束功率时的靶板的温度分布。在Workbench中建立V字形靶板物理分析模型,做以下假设:(1)忽略靶板、真空室等部件通过热辐射传递的能量,忽略靶板与其他连接部件之间通过热传导传递的能量,负离子束的所有能量都被冷却水吸收;(2)忽略材料性能的变化,如温度上升引起的热膨胀等;(3)假设靶板中每个冷却通道的压降相同。以图2所示的负离子束功率密度分布为靶板的输入热负荷,在冷却水流量为80 m3/h条件下进行稳态模拟分析,得到靶板的温度分布如图4所示。靶板的温度分布与负离子束的功率密度分布一致。两个靶板的交界处对应于束斑的中心,靶板的最高温度对应于粒子束负离子束的最高功率密度。

      Figure 4.  Temperature distribution of target plates

      仿真分析结果表明,在设计参数下,V字形靶板稳态运行时的最高温度为610 ℃,远低于铜的熔点1 083.4 ℃,满足使用要求。

    • 依据前面的物理结构设计和平台真空室内量热靶的安装尺寸,综合量热靶的安装、真空和水冷需求,完成量热靶的工程设计。量热靶的整体外形尺寸为1 590 mm(长)×1 300 mm(宽)×3 990 mm(高),包含可调底座、靶板组件、连接支架、真空室盖板组件和转轴驱动机构,如图5所示。量热靶安装在真空室内部,可调底座置于真空室底部,通过上端的密封法兰与真空室顶部的法兰螺钉拧紧密封。靶板和分水铜管以外的结构均采用316L不锈钢。

      Figure 5.  Structural model of calorimeter target

      可调底座的作用是在量热靶安装在真空室内部时提供支撑,为了不影响上端的真空法兰密封,可调底座在高度上是可调节的。可调底座和连接支架间装有4组碟簧组件,每组有4对碟簧对合组合。安装时,当量热靶吊装到位后碟簧组件产生一定变形,在上端密封法兰螺钉的紧固作用下碟簧组件能够适当压缩,实现法兰的真空密封,如图6所示。

      Figure 6.  Adjustable base and Disc spring assembly

      实验平台短脉冲小功率调试运行时,需启用远红外摄像机在远红外诊断真空室进行束流诊断,此时需要将靶板移开,让出中性束传输通道。HL-3托卡马克装置 5 MW-NBI加热束线中采用垂直方向升降方式,将整个量热靶移动到中性束传输通道的上方[20]。而由于实验平台真空室容积有限,平台量热靶采用旋转方式,切换两个靶板的开合状态,让出中性束传输通道,如图7所示。为精简量热靶结构,两个靶板组件采用独立的进出水道,进出水道为3层管道,内管为进水通道,中间层为真空层,外层为出水通道。两个靶板以自身的进出水管作为旋转轴,在驱动机构作用下,分别反向旋转18°,形成靶板闭合和张开两个状态,通过限位开关实现到位反馈。为了满足3层管道既作为靶板组件的进出水道,又作为靶板的旋转轴的使用要求,其采用了磁流体动态真空密封[21]。水由分水腔通过分水铜管进入靶板底部,由顶部流出通过分水铜管汇合到合水腔,分水腔和合水腔均与靶板焊接成一体。

      Figure 7.  Opening and closing status of target plates

    • 根据现有实验平台真空室结构和引出电极尺寸,计算参数200 kV/20 A下,束发散角为1度时,负离子源束功率密度分布和束斑尺寸。在此基础上采用Workbench软件对无氧铜V字形靶板结构进行热负荷模拟计算,冷却水流量80 m3/h条件下长脉冲满功率运行时靶板的最高温升为610 ℃。量热靶采用磁流体真空密封,实现了V字形靶板结构的开合,靶板背面布置了热电偶阵列实时监测靶板温度。量热靶工程结构紧凑,材料选用满足真空要求,安装尺寸能够兼容离子束流诊断真空室和中性束流诊断真空室,满足实验平台的诊断需求,能够安全运行。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return