-
世界上已建成或在建的大中型托卡马克(Tokamak)装置主要包括:韩国的KSTAR、欧洲的JET、我国的EAST、日本的JT-60SA以及由多国政府合作共同投资建造的ITER项目[1]。根据负荷运行容量及供电能量,不同装置采用的供电方式和配电方案也不相同。目前主流的方式是由电网直接供电[2-3],但Tokamak装置中存在着较大的大容量、波动性冲击功率问题,另外目前Tokamak反应堆暂不具备稳态运行条件,其供电系统必须设计成能够支持脉冲运行,这也加剧了电源侧波动。因此在Tokamak装置的电源系统设计和运行时,电源系统与电网的兼容性是不可忽略的重要因素[4-5]。
为此,核聚变装置如我国的HL-2A和HL-2M采取脉冲供电系统进行供电,通过切换电路300 MV·A脉冲发电机组可分别向环向场(TF)线圈电源和极向场(PF)线圈电源供电,其原理图如图1所示。脉冲发电机组采取立式结构飞轮发电机(FG),由300 MV·A同步发电机和8.5 MW绕线式异步电动机同轴组成[6]。
尽管FG提供了重要的功率支撑,但它在发生重大故障或需要快速响应时存在局限。FG的机械结构和运行机制限制了其快速动态响应能力,而且市场上缺乏可以快速替换的同类设备,这在紧急情况下可能会导致电源系统的不稳定。此外,FG的维护成本高且寿命相对较短,特别是在高频繁启停的操作环境下更为明显[6]。自本世纪之初以来,模块化多级转换器(MMC)因其应用于高功率设备和高压直流(HVDC)传输系统的潜力而广受关注[7-9]。与传统的两级转换器相比,MMC展示了多个优势:它提供了可扩展的输出电压、分散的能量存储,并且在出现故障时,可以更换损坏的子模块(SM)[10]。目前这些优势特性在核聚变领域越发受到重视。
另一方面,超级电容器(SC)因其高功率密度而闻名,一些基于SC的托卡马克线圈高功率需求的应用已在开发中[11]。表1显示了SC、FG、常见电池和标准电容器之间的比较:SC的功率密度高于锂离子电池(高达5~10 kW/kg),但其能量密度显著较低[12];由于它们的材料组成和设计结构,SC也具有较低的等效串联电阻。这些特性导致了更高的效率、更大的电流充放电能力和更低的热损失。得益于它们的高功率密度,SC有几个潜在的应用领域,但它们主要用于不间断电源系统和混合动力电动汽车[13]。
参数 电池 飞轮发电机 超级电容器 能量密度/(Wh·kg−1) 10~200 5~50 1~10 功率密度/(kW·kg−1) 0.03~0.50 0.3~1.2 5~10 Table 1. Comparison of SC, FG, and common batteries in terms of energy density and power density
为了增加SM的储能,SC代表了一个值得探索的有前途的替代方案。然而,SC不能直接连接到线圈上,它们需要一个合适的转换拓扑结构能够以受控方式驱动它的输出电流。实际上,在脉冲期间,为了确保适当的等离子体约束,环形磁场波动不得超过固定值。由于它严格依赖于环形场线圈电流波动(在第4节中定义),必须采用能够控制该电流的合适转换器。文章将MMC的电容器替换为超级电SC模块,构建出一个为聚变应用开发的基于SC的脉冲系统电源。
对于反应堆脉冲负荷,因为PF线圈需要控制和调整等离子体的形状和位置,这需要电源系统具有高度的动态响应能力和调节灵活性,故研究针对PF线圈进行MMC电源转换拓扑设计开展较早[14-17],文章中不再详述。文章将着重针对反应堆脉冲负荷中的TF线圈供电进行基于SC的电源设计。考虑到TF线圈的性能直接影响到整个聚变系统的稳定性与效率,且其在反应堆脉冲运行条件下负荷占比高,这使得对其供电性能的深入了解尤为关键。
-
充电过程分为两个子阶段:预充电阶段和增压充电阶段(图6)。预充电阶段是通过低功率降压整流器实现的:它同时为各SC模块充电并逐渐达到增压充电阶段所需的电压。在增压充电阶段中,SC模块通过基于增压整流器的充电器被充至其满电压,该充电器借助功率IGBT实现,从而具有可扩展性。在此阶段,电感以充电电流变化率$ {\mathrm{d}}{i}/{\mathrm{d}}{t} $首先存储能量,然后将此能量用于给SC充电。为了将电感器存储的能量转移到SC上,电感器的电流变化率$ \mathrm{d}i_{\mathrm{\mathit{L}}}/\mathrm{d}t $必须为负值(电感的能量表达式为0.5LI2,这里L是电感值,I是通过电感的电流。电流的任何变化都会影响在电感中存储的能量)。电感器两端的电压由以下公式给出:
$$ V\mathrm{_L}\approx V_i-V_0 $$ (1) 其中V0定义为充电器的输出电压,其数值必须高于输入电压Vi。因此需要额外配置预充电设备。
为了更好地理解充电过程,对从单个SC模块的电压电流波形进行了仿真,如图7所示。
Figure 7. Current and voltage waveforms of the SC module during the pre-charging and boost-charging stages
考虑到电压和电流限制条件(仿真选择了单个SC额定10 A,预充上限70 V)以及拓扑结构中并行模块的数量,一个40 kW的预充电器需要大约10 min时间,以300 A的总电流(30个并行模块)将每一组超级电容器模块充电至70 V。增压充电阶段的限制条件为可用的功率和充电时间:前者为交流电网的最大可提供功率(仿真中假设为5 MW),后者则应尽量缩短;在总充电电流为2.1 kA(每支臂70 A)和输入电压为1.5 kV的条件下,充电器需大约120 s将超级电容器模块充至满电压。
-
一旦SC完全充电,它们即准备通过储存的能量为线圈供电。出于此目的,充电电路与SM断开连接,并仅将它们与线圈相连。在此阶段,系统拓扑可由图5右侧部分所示,其中TF线圈由串联的RL电路表示(VL表示穿过线圈电感的电压,Vcu表示穿过其电阻的电压降),而SM矩阵则可以视作可变电压源。
在电流上升阶段,流过TF线圈的电流应尽可能快速地提升至20 kA或更高(更快的上升阶段意味着在此时间框架内更少的能量损失),为此,电源输出电压需要最大化,意味着所有可用的矩阵行都将被利用以保持输出电压尽可能高。
平顶阶段至关重要:在此阶段,电流应保持在约高位一段时间(依据等离子体脉冲的要求而定),但实际上,线圈电流会出现波动($ \Delta i $),其必须维持i在$ {i}_{\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{s}} $电流值的0.1%以下。$ \Delta {i} $定义为:
$$ \Delta i\approx\frac{V_{\mathrm{s}}-V_{\mathrm{c}\mathrm{u}}}{L_{\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{s}}}t_{\mathrm{o}\mathrm{n}/\mathrm{o}\mathrm{f}\mathrm{f}} $$ (2) 式中:
Vs ——电源电压(V);
Vcu ——等效电阻压降(V);
ton ——(Vs − Vcu)为正($ \Delta i $为正)的时间(s);
toff ——(Vs − Vcu)为负($ \Delta i $为负)的时间(s)。
图8展示了高频开关状态下放大后的平顶阶段电流及电压波形理想状态(忽略了由$ \Delta i $和SC电压损失引起的Vcu变化),并用虚线强调了在$ {t}_{\mathrm{o}\mathrm{n}} $和$ {t}_{\mathrm{o}\mathrm{f}\mathrm{f}} $期间Vs的假定值。从图6的电路可以清楚看出,当Vs > Vcu时,$ {i}_{\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{s}} $增加;而当Vs < Vcu时,它按照|Vs − Vcu|的斜率减少,然后这一差值被最小化。最小化|Vs −Vcu|意味着Vs采用最接近Vcu的可用值(ΔV取决于MMC拓扑可操作的最小单位)。提高IGBT的切换频率同样可以限制$ \Delta i $($ {t}_{\mathrm{o}\mathrm{n}} $/$ {t}_{\mathrm{o}\mathrm{f}\mathrm{f}} $会减小),但这将增加功率电子的切换损失,并减少SC的寿命。因此,将尽量保持尽可能低的切换频率,而降低电流波动的首选方法是调整电压。
在电流下降阶段,SM被短路,TF线圈的能量在其内部电阻中耗散。此阶段内,$ {i}_{\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{s}} $的变化为负,一旦线圈中储存的所有能量耗尽,该变化量变为零。原则上,这些能量可以被回收,并用于为SC充电。但在此场合,切换模块将必须是IGBT全桥而不是半桥[21],这会导致功率电子的导通损失翻倍,因为在全桥配置中,两个IGBT将持续导电,而在半桥配置中只有一个导电。
完整脉冲阶段的波形仿真如图9所示。其展示了标准30 s脉冲期间的$ {i}_{\mathrm{C}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{s}} $、Vs和所需功率,可见与图2的FG脉冲电源相比,设计得到的仿真曲线与其基本一致,且响应速度更快。而图10展示了在等离子体脉冲期间单个SC模块的电压和电流曲线。在平顶阶段,SC主要用于补偿铜损失,此时它们处于高频切换操作模式。从线圈的角度看,一个4 Hz的切换频率足以将电流波动保持在0.1%以下,但为了保持SC电压的平衡,它们会以更高的频率运行。
-
文章介绍了一种基于SC的TF线圈供电方案,该方案提出了一种可能替代FG为Tokamak反应TF线圈供电的可能性,并详细论述了方案的实施方法与优势。文章采用了MMC的拓扑结构来将SC的能量转化为托卡马克线圈的电能,此结构的高单元数比FG提供了更高的灵活性,并且在某些模块出现故障时,转换器仍能继续运行,而FG则不能做到这一点。方案同时提出了主控制器、行控制器和SM控制器的通信架构,通过可扩展的功率模块和集中-分散控制方法,可满足超高功率线圈电源“无限”可扩展性的需求。
文章的仿真计算基于理想化的SM假设,没有考虑在实际应用中可能出现的子模块之间的环流问题和电压不平衡问题。尽管这些假设简化了设计和仿真过程,能够集中研究基于超级电容器的脉冲电源系统的基本特性,但实际操作中,子模块的非理想特性可能对系统性能产生重要影响。未来的研究可以进一步探索这些实际问题,特别是研究环流抑制和电压平衡控制策略,以提高系统的实际应用性能和可靠性。
-
广 告 “受控核聚变工程技术”专刊封面----------------------------------------------------------------------- 封一 中核集团牵头!可控核聚变创新联合体成立--------------------------------------------------------- 封二 “受控核聚变工程技术”专刊特约主编寄语-------------------------------------------------------------- A1 “受控核聚变工程技术”专刊客座编辑-------------------------------------------------------------------- A2 中国科学院合肥物质科学研究院等离子体物理研究所----------------------------------------------- 159 华中科技大学聚变与等离子体研究所-------------------------------------------------------------------- 160 东华理工大学核科学与工程学院“天环一号”---------------------------------------------------------- 161 中山大学中法核工程与技术学院-------------------------------------------------------------------------- 162 中国核工业集团公司核工业西南物理研究院---------------------------------------------------------- 封三 “受控核聚变工程技术”专刊封底------------------------------------------------------------------------ 封四
Supercapacitor-Based Toroidal Field Coil Power Supply Design for Nuclear Fusion Magnet Power System
doi: 10.16516/j.ceec.2024.3.13
- Received Date: 2024-03-29
- Accepted Date: 2024-04-23
- Rev Recd Date: 2024-04-22
- Available Online: 2024-05-24
- Publish Date: 2024-05-10
-
Key words:
- Nuclear fusion magnet power system /
- flywheel generator /
- toroidal field coil /
- supercapacitor /
- modular multilevel converter
Abstract:
Citation: | XU Yize, LIN Rui, WANG Siwei. Supercapacitor-based toroidal field coil power supply design for nuclear fusion magnet power system [J]. Southern energy construction, 2024, 11(3): 117-125 doi: 10.16516/j.ceec.2024.3.13 |